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INTRODUCTION

Since McCulloch and Pitts’ seminal work (McCulloch 
& Pitts, 1943), several models of discrete neural net-
works have been proposed, many of them presenting 
the ability of assigning a discrete value (other than 
unipolar or bipolar) to the output of a single neuron. 
These models have focused on a wide variety of ap-
plications. One of the most important models was 
developed by J. Hopfield in (Hopfield, 1982), which 
has been successfully applied in fields such as pattern 
and image recognition and reconstruction (Sun et al., 
1995), design of analogdigital circuits (Tank & Hopfield, 
1986), and, above all, in combinatorial optimization 
(Hopfield & Tank, 1985) (Takefuji, 1992) (Takefuji & 
Wang, 1996), among others. 

The purpose of this work is to review some appli-
cations of multivalued neural models to combinatorial 
optimization problems, focusing specifically on the 
neural model MREM, since it includes many of the 
multivalued models in the specialized literature.

BACKGROUND

In Hopfield and Tank’s pioneering work (Hopfield & 
Tank, 1985), neural networks were applied for the first 
time to solve combinatorial optimization problems, 
concretely the well-known travelling salesman problem. 
They developed two types of networks,  discrete and 
continuous, although the latter has been mostly chosen 
to solve optimization problems, adducing that it helps 
to escape more easily from local optima. Since then, the 
search for better neural algorithms, to face the diverse 
problems of combinatorial optimization (many of them 

belonging to the class of NPcomplete problems), has 
been the objective of researchers in this field.

This method of optimization consists of minimizing 
an energy function, whose parameters and constraints 
are obtained by means of identification with the objec-
tive function of the optimization problem. In this case, 
the energy function has the form:
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where N is the number of neurons of the network, wi,j 
is the synaptic weight between neurons j and i, and θi 
is the threshold or bias of the neuron i. 

In the discrete version of Hopfield’s model, com-
ponent si of the state vector S = (s1,...,sN) can take 
values in { }1,1= −  (constituting the bipolar model) 
or in { }0,1=  (unipolar model). In the continuous 
version, [ ]1,1= −  or [ ]0,1= . This continuous 
version, although it has been traditionally the most 
used for optimization problems, presents certain in-
conveniences: 

• Certain special mechanisms, maybe in form of 
constraints, should be contributed in order to 
get that, in the final state of the network, all the 
components of state vector S belong to {–1, 1} 
or {0,1}. 

• The traditional dynamics used in this model, 
implemented in a digital computer, does not 
guarantee the decrease of the energy function in 
every iteration, so it is not ensured that the final 
state is a minimum of the energy function (Galán-
Marín, 2000). 
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However, the biggest problem of this model (the 
discrete as well as the continuous one) is the possibil-
ity to converge to a non feasible state, or to a local 
(not global) minimum. Wilson and Pawley (1988) 
demonstrated, through massive simulations, that, for 
the travelling salesman problem of 10 cities, only 8% 
of the solutions were feasible, and most not good. 
Moreover, this proportion got worse when problem 
size was increased. 

After this, many works were focused on improving 
Hopfield's network: 

• By modifying the energy function (Xu & Tsai, 
1991). 

• By adjusting the numerous parameters present in 
the network, as in (Lai & Coghill, 1988). 

• By using stochastic techniques in the dynamics 
of the network (Kirkpatrick et al., 1983) (Aarts 
& Korst, 1988). 

Particularly, researchers tried to improve the effi-
ciency of Hopfield's network for the travelling salesman 
problem, achieving acceptable results, but inferior to 
Operations Research techniques (Takahashi, 1997). 
The reason for these disappointing results is that the 
linear formulation used by these techniques is a great 
advantage in comparison with neural networks, which 
unavoidably use a quadratic energy function, impeding 
the use of subpaths deletion techniques (Smith, 1996), 
and provoking the appearance of a bigger number of 
local minima. 

Another research line was devoted to the improve-
ment of Hopfieldtype recurrent networks, and their ap-
plication to diverse problems of optimization, in which 
some results proved to be better than those obtained 
by traditional Operations Research techniques (Smith 
& Krishnamoorthy, 1998). Takefuji's work (Takefuji, 
1992) (Lee et al., 1992)(Takefuji & Wang, 1996), with 
a great number of publications in international media, 
must be highlighted. Their results have been overcome 
by the OCHOM model (GalánMarín & MuñozPérez, 
2001).

MUlTIvAlUeD DISCReTe ReCURReNT 
MODel. ApplICATION TO 
COMBINATORIAl OpTIMIzATION 
pROBleMS 

A new generalization of Hopfield’s model arises in the 
works (MéridaCasermeiro, 2000) (MéridaCasermeiro 
et al., 2001), where the MREM (Multivalued REcurrent 
Model) model is presented.  

The Neural MReM Model

This model presents two essential features that make it 
very versatile and that increase its applicability: 

• The output of each neuron, si, is a value of the 
set { }1 2, , , Lm m m=  , which is not necessarily 
numeric. 

• The concept of similarity function f between 
neuron outputs is introduced. f(x,y) represents 
the similarity between neuron states x and y. 

This way, the energy function of this model is as 
follows:
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where :i →  is a generalization of the thresholds 
of each neuron. 

The features mentioned above make that in this 
model certain optimization problems (as the travel-
ling salesman problem), have a better representation 
than in the unipolar or bipolar Hopfield’s models, and 
their successors. 

It is clear that MREM includes Hopfield’s models 
(with outputs in { }1,1= −  or in { }0,1= ) if we 
consider the similarity function given by the product 
f(a,b) = ab. Other multivalued models, like MAREN 
or SOAR (Erdem & Ozturk, 1996) (Ozturk & Abut, 
1997), are also generalized by MREM. 

The dynamics for this network is chosen according 
to the problem to be tackled. 
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Application to Several Combinatorial 
Optimization problems 

This multivalued model has been successfully applied 
to diverse optimization problems, outperforming the 
best-established algorithms. Several of these applica-
tions can be found at (MéridaCasermeiro et al., 2003) 
(MéridaCasermeiro & LópezRodríguez, 2005) (López
Rodríguez et al., 2006). 

These problems are typical representatives of the 
NPcomplete complexity class, indicating their degree 
of difficulty in resolution. 

The Travelling Salesman Problem 

Traveling Salesman Problem (TSP) is one of the most 
wellknown and studied combinatorial optimization 
problems due to its wide range of reallife applications 
and intrinsic complexity. 

Reallife applications cover aspects such as automatic 
routing for robots and hole location in printed circuits 
design (Reinelt, 1994), as well as gas turbine checking, 
machine task scheduling or crystallographic analysis 
(Bland & Shallcross, 1987), among others. 

This problem can be stated as follows: given N cities 
X1,...,XN and distances di,j between each pair of cities Xi 
and Xj, the objective is to find the shortest closed tour 
visiting each city once. 

In order to get the TSP solved by this neural model, 
two identifications must be done: 

• A network state must be identified to a solution 
to the TSP: Since a solution to the N cities TSP 
can be represented as a permutation in the set of 
numbers {1,...,N}, the net will be formed by N 
neurons, taking value in the set { }1, , N=  , 
such that state vector S = (s1,...,sN) represents a 
permutation of {1,...,N}. With this representation, 
si = k means that k th city will be visited in the i th 
place. 

• The energy function must be identified to the total 
distance of a tour: If we let f(x,y) = –2dx,y and 
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 the total distance of the tour represented by state 
vector S. 

Computational dynamics is based on starting with 
a random feasible initial state vector and updating 
neuron outputs to keep the current state vector inside 
the feasible states set. To this end, at each iteration, a 
2opt update will be made on current state vector, that 
is, every pair of neurons, p,q with p > q + 1, is studied 
and checked in parallel whether there exists a cross 
between segments (sp, sp+1) and (sq, sq+1). In this case, 
the next relation holds: 

1 1 1 1, , , ,p p q q p q p qs s s s s s s sd d d d
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Then, the trajectory between cities sp+1 and sq is 
inverted, that is, if S is the current state, the new state 
vector S’ will be defined by: 

1, , 1
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As an additional technique for improvement, it has 
also been considered 3opt updates: the tour is decom-
posed into three consecutive arcs, A, B and C, which 
are then recombined in all possible ways: {ABC,AC
B,AB’C,ABC’,AB’C’,AC’B, ACB’, AC’B’}, where 
A’,B’,C’ are the reversed arcs corresponding to A, B, and 
C, respectively. Note that {ABC,AB’C,ABC’,AC’B’} 
are 2opt updates, so there is no need to check them 
again. 

The next state of the net will be the combination 
that decreases most the energy function. Further details 
in (MéridaCasermeiro et al., 2003). 

In (MéridaCasermeiro et al., 2003), some experi-
mental results are provided, for problems from the 
TSPLIB repository (see Table 1). This model is com-
pared against KNIES (Aras et al., 1999), a model based 
on Kohonen’s self organizing map. MREM proved to 
outperform KNIES, obtaining in many cases almost 
optimal solutions.
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The Graph Partition Problem 

Let ( , )=   be an undirected graph without self-
connections. { }iv=  is the set of vertices and ε is 
the set of ne edges. For each edge ( , )i jv v ∈  there is 

a weight ,i jc +∈ . All weights can be expressed by a 
symmetric real matrix C, with ci,j = 0 when it does not 
exist the arc ( , )i jv v . 

MaxCut Problem: to find a partition of   into K 
disjoint sets Ai such that the sum of the weights of the 

Figure 1. Best solution found by MREM (left, error=1.3%) and optimal solution (right)

Instance Optimum KNIES                         MREM               
                                                Best (%)    Best (%) Av. (%)      t (sec)

eil51                    426               2.86             0.23           2.43          3.12 
st70                      675              1.51             0.00           1.89          9.01 
eil76                    538               4.98             1.30           3.43        10.80 
rd100                 7910               2.09             0.00          3.02         61.70 
eil101                   629              4.66             1.43           3.51        27.76 
lin105               14379              1.29             0.00           1.71        28.83 
pr107                44303              0.42             0.15          0.82         49.79 
pr124                59030              0.08             0.00          1.23         59.51 
bier127 118282              2.76             0.42          2.06        66.29 
kroA200            28568              5.71             3.49          6.70      318.44 

Table 1. Results of KNIES and MREM for the TSP for some instances from TSPLIB
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edges from ε, that have their endpoints in different 
elements of the partition, is maximum. Therefore, the 
function to maximize is 

,
|| j ni m
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>
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To solve the MaxCut problem with MREM, we need 
N neurons, one per node in  . The output of neuron 
i, { }1,2, ,is K∈ =  , will denote that i th node is 
assigned to Asi

. 
Since it is equivalent to maximize the cost of 

edges cut by the partition and to minimize the cost of 
edges with endpoints in the same set of the partition, 
the objective function can be modelled as an energy 

function by taking wi,j = –2ci,j and f(x,y) = δx,y (that 
is, f(x,y) = 1 if, and only if, x = y, otherwise it is 0), 
considering θi = 0. 

The dynamics used in (MéridaCasermeiro & López
Rodríguez, 2005) was named best2. 

best2 consists in getting the greatest decrease of the 
energy function by changing the state of only two neu-
rons at each time. If neurons p and q are to be updated, 
energy increments ΔE(i, j) when sp = i and sq = j, for i, j 
∈ {1,...,K}, are computed. Then, the state of minimum 
increase is chosen as the new network state.

By using this dynamics, in (MéridaCasermeiro & 
LópezRodríguez, 2005), the MREM model is compared 
against some other networks, like OCHOM (Galán-
Marín & MuñozPérez, 2001), obtaining the best results 
in authors’ experiments (see Table 2).

dens                    MREM                                  OCHOM                  
Best            Av.              t           Best              Av.           t

0,05       276,8       256,28 0,05   

N

     276,8         242,15 0,0023
0,25 1013,2       970,84 0,06        999,6         926,26 0,0026

50 0,5 1778,8     1724,08 0,06      1778,8       1694,44 0,0033
0,75 2663,6     2475,48 0,05       2646         2432,47 0,0036
0,9 2941,8     2876,18 0,06       2940,4      2865,83 0,0031
0,05       990,2       917,72 0,15         958,8        867,64 0,0064
0,25 3719,2     3620,9 0,14       3725,5       3571,24 0,0086

100 0,5 6711,6     6637,08 0,13       6695,8       6585,54 0,0126
0,75 9816,2     9524,1 0,14       9816,2       9444,33 0,0118
0,9     11348,8   11215,06 0,14 11391,3     11148,4 0,0109
0,05 2009,8     1933,6 0,26       1929,6       1837,43 0,0147
0,25 7990        7807,16 0,26       7940,2       7690,35 0,0258

150 0,5      14701,4  14531,06 0,24 14658,4      14489,5 0,0209
0,75    21126,2  20899,94 0,22 21124         20907,6 0,0252
0,9      24926     24589,62 0,22 24859,7      24533,1 0,0256
0,05      3411,4    3321,84 0,38       3409,5        3316,28 0,0276
0,25    13741     13533,9 0,35 13617,9      13439,7 0,0468

200 0,5      25750,8  25500,18 0,34 25770,8      25526,8 0,0451
0,75    37038,6  36789,2 0,32 36932         36683,4 0,0486
0,9      43584,8  43296,26 0,33 43420,6      43104,6 0,0462

Table 2. Results for MaxCut comparing MREM and OCHOM
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The �Pages Graph Layout Problem

In the last years, several graph representation problems 
have been studied in the literature. Most of them are 
related to the linear graph layout problem, in which 
the vertices of a graph are placed along a horizontal 
``node line’’, or ``spine’’ (dividing the plane into two 
halfplanes or ̀ `pages’’) and then edges are added to this 
representation as specified by the adjacency matrix. The 
objective of this problem is to minimize the number of 
crossings produced by such a layout. 

Some examples of problems associated to this linear 
graph layout problem (or 2 pages crossing number 
problem, 2PCNP) are the bandwidth problem (Chinn et 
al., 1982), the book thickness problem (Kainen, 1990), 
the pagenumber problem (Malitz, 1994), the boundary 
VLSI layout problem (Ullman, 1984) and the singlerow 
routing problem (Raghavan & Sahni, 1983), or printed 
circuit board layout (Sinden, 1966) and automated 
graph drawing (Tamassia et al., 1988). 

In (LópezRodríguez et al., 2007), a neural model, 
derived from MREM, is designed to solve this problem. 
One of the differences of this model with the algorithms 

developed in literature is that there is no need of assign-
ing a good ordering of the vertices at a preprocessing 
step. The model, as well as the relative position of the 
arcs, computes this optimal node order. 

To solve the 2PCNP problem, authors have consid-
ered two MREM neural models: 

• The first network will be formed by N neurons, 
being N the number of nodes in the graph. Neurons 
output (the state vector) indicate the node ordering 
in the line. Thus, si = k will be interpreted as the 
k th node being placed in the i th position in the 
node line. Hence, the output of each neuron can 
take value in the set { }1 1, 2, , N=  . 

• The second network will be formed by as many 
neurons as edges in the graph, M. The output of 
each neuron will belong to the set { }2 1,1= −
. For the arc (vi, vj), S(vi, vj)

 = –1 will indicate that 
the edge will be drawn in the lower halfplane, 
and S(vi, vj)

 = +1, in the upper one. 

Initially, the state of the net of vertices is randomly 
selected as a permutation of  {1,2,...,N}. At any time, 

6

7

8

MREMGraph    CN e-len 1-page greedy

 K   6 21            3           3          3          4           5
 K   7 28            9           9         11         9          13
 K   8 36           18         18  

N M

9

10

20

      18        30         27
 K   9 45           36         36        42        50         50
 K   10        55           60         60         80        92        80

 C (1, 2)  20 40            0      

20

20

22

     2           0          0          0
 C (1, 2, 3)  20 60           19         24         36        48        40
 C (1, 2, 3, 4) 20 80           74         74         90      118      108
 C (1, 2, 3

22

24

)  22 66           22         26         40        54        44
 C (1, 3, 5, 7) 22 88         198        200       306     294      286
 C (1, 3)  24 48           11          14        22        16      

26

28

30

  22
 C (1, 3)  26 52           11          16        24        16        24
 C (1, 3, 5)  28 84           80          86      138      138      130
 C (1, 3, 5)  30 90           92          96      148      150      140

Table 3. Comparison between MREM and the heuristics mentioned in Cimikowski’s work
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the net is looking for a better solution than the current 
one, in terms of minimizing the energy function. This is 
achieved by permuting the output of two neurons (node 
positions) and changing the location of an edge (from 
the upper halfplane to the lower one, and viceversa). 

In (LópezRodríguez et al., 2007), this new model is 
compared against some heuristics (Cimikowski, 2002) 
specially designed for this problem. MREM obtained 
the best solutions in the experiments, improving the 
best known solution in some cases (Table 3).

FUTURe TReNDS

Recurrent neural networks can be used to solve many 
optimization problems. Researchers and practitioners 
can benefit from the application of the neural model 
MREM to diverse optimization problems. 

Other problems where these models can be ap-
plied cover aspects such as data classification, image 
compression by vector quantization, etc. It must be 
noted that many graph-based problems can be easily 
formulated in terms of minimizing the energy function 
of this model: degreeconstrained minimum spanning 
tree, maximum clique, etc.  

CONClUSION 

The first works in optimization by neural networks were 
inspired in Hopfield’s models. These models did not 
obtain good results when compared to the wellknown 
Operations Research techniques. 

Many researchers focused on developing new neural 
models to improve the performance of Hopfieldtype 
networks in this kind of tasks. 

The problem of these binary models is that all the 
information given by the problem has to be specified 
by means of only two values ({0,1} or {–1,1}), so some 
information is lost. 

Multivalued neural models are designed to repre-
sent the information of the problem by means of more 
than two values, achieving a better representation of 
the problem. 

With this improvement, computational dynamics of 
multivalued models can be easily designed to solve a 
given optimization problem. These advantages make 
this kind of networks a very powerful ally in tackling 
combinatorial problems. 

The MREM model is a multivalued model that gen-
eralizes many other models, so it can be easily used to 
solve optimization problems, as shown in the text. 

Figure 2. Optimal layouts for graphs K6 (left) and K3,3 (right)
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Some applications of the model are wellknown 
NPcomplete optimization problems, like the Travel-
ing Salesman Problem, the Graph Partition Problem, 
and the 2 Pages Crossing Number Problem. As shown 
in the references, this model is able to outperform 
the bestalgorithmuptodate in each of the mentioned 
problems.
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Key TeRMS

2 Pages Graph Layout Problem: Problem of find-
ing an ordering of the nodes of a graph on a straight 
line, and assigning, to each edge, a location in any of 
the two halfplanes induced by that line, such that the 
number of crossings between edges is minimum.

Artificial Neural Network: Structure for distrib-
uted and parallel processing of information, formed by 
a series of units (which may possess a local memory 
and make local information processing operations), 
interconnected via one-way communication channels, 
called connections.

Computational Dynamics: Updating scheme of 
the neuron outputs in a neural model.

Energy Function: Objective function of the opti-
mization problem solved by a neural model.

MaxCut Problem: Problem of finding a partition of 
the set of nodes of a weighted graph, such that the sum 
of the costs corresponding to edges, with end-points in 
different sets of the partition, is maximum.

Multivalued Discrete Neural Model: A model 
of neural networks in which neuron outputs may take 
value in the set { }1, , Lm m=  , instead of { }1,1= −  
or { }0,1= .

Travelling Salesman Problem: Problem of finding 
the shortest closed tour that visits a series of N cities. 
Each city must be visited exactly one time.


