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Chapter 9
Formal Methods in FCA and Big Data

Domingo Lépez-Rodriguez, Emilio Mufioz-Velasco, and Manuel Ojeda-Aciego

9.1 Introduction

The term Big Data generally refers to massive quantities of data exceeding the typi-
cal processing and computing capacity of conventional databases and data analysis
techniques. Due to its particular features, the Big Data problem requires the design
of ad hoc tools and methods to analyze and extract patterns from large-scale data.
Increased data storage capabilities and processing power, together with the availabil-
ity of massive volumes of data constitute the cause of the recent rise of Big Data.
Organizations have more data available than they can process since, in general, their
computing resources and technologies are limited and not adapted to the large-scale
processing inherent in Big Data. In addition to the obvious massive data volume, Big
Data has associated other specific qualities, often referred to as the five Vs: Volume,
Variety, Velocity, Veracity and Value (the worth of the information extracted from
data) [36, 39].

Machine learning is a subdomain of computer science used to analyze data,
automating the construction of analytical models. The purpose of machine learning
algorithms is to learn from existing data without the need to explicitly program an
analytical model. The trained models learn from preceding data and calculations and
aim to produce certain and replicable decisions and outcomes.

Machine learning has an extensive variety of applications in fields such as artificial
intelligence, optimal control, statistics, information theory, optimization theory, and
many other disciplines of mathematics, engineering, and science [66].

The essence of Big Data Analytics is mining and extracting patterns for decision-
making, prediction and other types of inference, from massive data. A significant
principle is that the extracted patterns should be meaningful and provide some
understanding about the analyzed data. As machine learning models are used in
critical and sensitive areas like medicine, the criminal justice system, and financial
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markets, the inability of humans to understand these patterns becomes problematic
[22, 46].

In this sense, logic-based approaches are perfect candidates to help make ma-
chine learning models understandable, be it through the hybridization with other
techniques [71], or as the core of an expert system [25], just to mention two interest-
ing cases.

Formal Concept Analysis (FCA) is a formal framework, built on lattice theory and
Galois connections, allowing to mathematically formalize the notion of “concept”
(a general idea that corresponds to some type of entity and that can be characterized
by some essential features of the class). The mechanisms used to extract these
concepts from a dataset in FCA allow us to hierarchically organize them in the so-
called “concept lattice”. An important aspect to emphasize is that the concept lattice
captures all the implicit knowledge that can be deduced from a formal context.
Another way to extract knowledge from a context is in the form of implications. In
essence, an “attribute implication” is an expression of type A — B where A and B are
sets of attributes/properties, and we say that this is fulfilled if every object that has
the attributes of A has those of B as well. The use of implicational systems allows to
handle all this implicit knowledge (knowledge that is tacit in the experiences, but not
codified nor formalized [65]) and to reason over it. We believe that this logic-based
approach is more suitable to provide understandable answers and, hence help avoid
the lack of interpretability and explainability of the results.

Explainability and interpretability are often used interchangeably. Although they
are very closely related, a greater comprehension of the Big Data problems can be
gained if their differences are well-understood.

There is no mathematical definition of interpretability. An approximation could
be [56]: “Interpretability is the degree to which a human can understand the cause
of a decision”. Another one is: “Interpretability is the degree to which a human can
consistently predict the model’s result” [47]. A higher interpretability of a model
means an easier understanding of why certain decisions or predictions are made.
Interpretability is about the capability of predicting the outcome given a change in
the input data or in the algorithm parameters. That is, it is the ability to understand
the relationship between the input provided and the outcome given by the model.

Explainability, meanwhile, is the ability to explain the internal mechanics of a
system in human terms. The difference with interpretability is very subtle, and this
makes the two terms frequently interchanged. However, one can say, in other words,
that interpretability is the ability to understand the influence of the mechanics, and
explainability is the ability to describe its mechanics.

Formal logical methods, such as the management of implicational systems stated
above, are, contrary to the statistical techniques already in use, highly interpretable
and explainable, what makes them more suitable for reasoning and extracting/repre-
senting knowledge.

The main issue is to what extent these logic-based methods can be applied to a Big
Data framework. The scalability of FCA methods and algorithms depends on, and is
constrained by, the complexity of the problems to be solved, namely: the identification
of concepts and construction of the concept lattice from a massive context, the
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computation of a canonical basis of implications and the efficient computation of
closures with respect to an implication system.

Here, the term basis is used for a set of implications, which, besides being sound
and complete, satisfies some minimality condition among all equivalent sets of
implications (defining the same closure system); thus, there may be different types
of bases. The canonical basis (also called stem basis or Duquenne-Guigues’ basis
[41]) is a basis of minimal cardinality.

It has been proved [7, 33] that, unless P = NP, there is no polynomial delay
algorithm to enumerate the implications of the canonical basis, both in the lectic
and in the reverse order. Let us note that, even in the simplest cases, the canonical
basis can have exponential size [51]. More precisely, the problems of enumerating all
pseudo-intents in a formal context (premises of implications in the canonical basis)
and computing the lectically largest pseudo-intent belongs to the coNP-complete
complexity class [7]. Even if the enumeration of pseudo-intents can be done without
an explicit ordering, this result is still true, as it was proved by comparing this
problem with that of enumerating minimal transversals in a hypergraph [34, 45].
Thus, somehow taming the complexity issues by designing alternative approaches
or increasing the threshold up to which the complexity is still tractable is a major
open question.

Therefore, most efforts are focused on two (overlapping) strategies: the develop-
ment of algorithms which, in the average case, have a short running time and low
complexity, and the definition of probabilistic and approximated logic approaches,
which may capture essential knowledge with high probability and reduced compu-
tational effort. These two strategies seek to build better techniques to explore large
datasets.

The objective of this work is to present a survey of the theoretical and technical
foundations of some trends of FCA with respect to the issues stated above. We have
explored and collected formal and technical developments regarding three pillars:

» The efficient construction of the concept lattice associated to a formal context
by the use of simplification procedures.

* The definition and computation of bases of implications different from the
canonical basis, satisfying other optimality conditions, and of logic rules and
operators that may lead to more efficient inference systems.

* The definition of probably approximately correct implication bases, as a way to
capture most of the knowledge contained in a dataset with efficient and scalable
algorithms.

The remainder of this work is structured as follows: in Sect. 9.2, we present
techniques for context and concept lattice reduction, including methods to simplify
the structure and decrease the practical complexity of the problem. In Sect. 9.3, logic
tools are described in order to operate on implication sets and define optimal bases
which may have an important impact on the performance of inference systems. In
Sect. 9.4, minimal generators are presented as a means to encapsulate a compressed
representation of the knowledge present in a formal context. Finally, Sect. 9.5 presents
the foundations for approximated implication bases and efficient algorithms that
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can be used to compute them. We finish with Sect. 9.6, where we present some
conclusions and potential future trends in the application of formal methods to Big
Data.

9.2 Context and Concept Lattice Reduction Methods

As stated before, the complexity of (the algebraic and logic tools related to) FCA can
be considered one of the most outstanding problems when trying to make effective
use of FCA in Big Data situations. Thus, some previous steps may be taken in
order to decrease the computational efforts needed to build the concept lattice and
to extract the implicational basis, actually reducing the complexity of the context
or of the associated concept lattice, both in terms of magnitude (size of object and
attributes sets) and of inter-relationships, while relevant information is kept. This set
of techniques is known as concept lattice reduction methods.

In [31], the authors make a classification of concept lattice reduction methods
into three categories: redundant information removal, concept lattice simplification
and attribute selection.

Redundant Information Removal

The aim of redundant information removal techniques is, given the formal context
K, to build a formal context K’ whose concept lattice has the same structure as that
of K.

Definition 9.1 For a given formal context K = (G,M,I), an object g € G (or an
attribute m € M or an incidence i € I, resp.) is said to be redundant information
if its removal builds a formal context K' = (G',M’,I') with G’ = G~ {g} (resp.,
M' =M~ {m}, or I' =1~ {i}) whose concept lattice is isomorphic to that of K.

Note that redundant information is a term coined from the purely algebraic point
of view, but not from the point of view of the application domain. This means that
not all the redundant information in a context may be considered not relevant, since
the relevance of an object or attribute is defined by the application context.

The clarification of a context [38] consists in replacing a set of objects {g;} C G
with exactly the same attributes by a representative object (that is, substitute all g; by
a single object g € [g;], where [g;] denotes the equivalence class of the objects with
the same attributes as g;) and making the analogous substitution in attributes. This
way, the new formal context K’ = (G',M’, I | ), isomorphic to K, is obtained by
removing duplicated rows and columns of the formal context.

Depending on the background knowledge, it may be advisable not to merge
two objects with the same attributes. In the application domain, they may still be
considered different from one another and changing a concept extent can influence
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the quality measures [52] computed from it. Thus, it is recommended to proceed
carefully when performing clarification in some contexts.

Other research lines [73] aim to analyse the information in the incidence table
in terms of the partitions induced on the sets of objects and attributes by some
functions of single attributes and objects of the context, obtaining the so-called
Formal Equivalence Analysis (FEA). Rather than looking on the effect of these
partitions on set representation, as done in Rough Sets Theory [63], the emphasis is
put on making explicit the information in the context.

Another kind of reduction is the removal of attributes representable by a combi-
nation of other attributes [38]. The former are called reducible attributes:

Definition 9.2 Given a formal context K = (G,M,I), an attribute m € M is called
reducible if there exists M’ C M with m ¢ M’ such that the extent of m coincides
with the extent of M’. In other words, m is reducible if it is contained in the closure
of M'.

Analogously, an object g € G is reducible if there is a G' C G with g & G’ such that
the intents of g and G’ coincide. In the dual context K = (M, G,I) (mlg <= gIm),
the closure of g and that of G’ (as attribute sets) are equal.

The result of processing a formal context by using clarification and the removal
of reducible attributes gives the standard context, and it is isomorphic to the orig-
inal context [38]. The complexity of constructing the standard context using the
clarification and reduction methods is O(|G||M|?), hence polynomial.

These clarification and reduction methods are only a sample of the techniques
which aim to minimize the number of attributes in the context while maintaining the
isomorphic correspondence between the original concept lattice and the associated
to the reduced context. In general, these techniques focus on computing the possible
reducts of a context:

Definition 9.3 [48] Given a context K = (G, M, 1), aset M’ C M is called consistent
if the concept lattice associated to (G,M’,I |Gy ) is isomorphic to that of K. A
reduct is a minimal consistent set of attributes, that is, X is a reduct if X is consistent
and no X’ C X is consistent.

An equivalent definition of reduct is that it is a maximal subset of M without
reducible attributes [49].

Although the clarification and reduction methods have polynomial complexity (in
the number of attributes), the general problem of computing all reducts of a formal
context has an exponential computational cost, since the number of possible subsets
to explore is exponential.

In order to propose a mechanism to compute a minimal set of attributes, in [76],
the concept of discernibility matrix is introduced:

Definition 9.4 Given a formal context K, the discernibility between concepts (A, B)
and (C, D) is defined by the symmetric difference between sets B and D:

dis (A, B), (C,D)) = (B~.D)U(D~ B)
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The discernibility matrix associated to the context is a matrix indexed by the
concepts, whose entries are the corresponding pairwise discernibilities. The set of
non-empty elements of the discernibility matrix is represented by Ax.

Using a discernibility matrix, all the reducts can be obtained, by the application
of the following result:

Theorem 9.1 Given a context K = (G,M,I) and Ak the set of non-empty elements
of its discernibility matrix, then D C M is consistent if and only if DN H # & for all
H € Ak.

This theorem shows that to find a reduct of a formal context is to find the minimal
subset D of attributes which verify the mentioned restriction.

In the same work [76], the authors classify the attributes as absolutely necessary,
relatively necessary or absolutely unnecessary to reflect whether they are necessary,
contingent or superfluous.

Definition 9.5 Given a formal context K = (G, M, I), an attribute is called absolutely
necessary if it is present in all reducts; it is said to be relatively necessary if it is
present in at least one, but not in all minimal consistent sets; and finally, an attribute
is unnecessary if it is not in any reduct.

However, the computation of discernibility the matrix requires a high computa-
tional effort, since all pairs of concepts are checked for its construction.

A more adequate refinement is proposed in [67], where the authors determine that
many of the discernibility sets computed following the strategy in [76] do not actually
contribute to finding the reducts. It was proved that the only discernibility sets that
need to be computed are those related to adjacent concepts in the concept lattice,
that is, to pairs of concept-superconcept. This number of computations corresponds
to the number of edges in the lattice, and is clearly lower than the total number
of concept pairs. However, both discernibility matrix methods need to compute all
formal concepts beforehand, which requires an exponential time in the worst-case.

In [48], a comparison between the traditional clarification and reduction method
with that of the discernibility matrix is presented. It is proved that the sets of attributes
that are merged in the clarification and reduction steps are exactly minimal non-
empty discernibility sets, therefore with the clarification and reduction we can obtain
the same result as with methods of attribute reduction based on the discernibility
matrix. The relevance of this result can be better understood if we see that the
complexity of the clarification and reduction method is O(|G||M|?) (polynomial)
and the discernibility matrix requires O(|M|?|.Z|)), where .Z is the set of concepts,
which can be of cardinality up to pmin{[GLIM} g0 actually the computation of the
discernibility matrix is exponential in the worst-case.

A further improvement is presented in [49], where a modified algorithm is intro-
duced that only computes the minimal discernibility sets, allowing for polynomial
time complexity, in contrast to the exponential complexity mentioned above. In ad-
dition, it is stated that if the consistent elimination of all unnecessary computations
of discernibility sets is pursued, the resulting method is just cosmetically different
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from clarification and reduction. In conclusion, the methods based on the computa-
tion of the discernibility matrix cannot become more efficient than those based on
clarification and reduction of the context.

It is worth noting that the classification into three categories (necessary, con-
tingent, superfluous) is independent of the following frameworks: (usual) concept
lattices, property-oriented concept lattices and object-oriented concept lattices [55].
Thus, only one of these three types of lattices needs to be considered when comput-
ing the reducts, and the algorithms developed, such as [15, 74], can be applied to
any of them.

A different reduction strategy is studied in [44]. It is focused on the incidence
relationship, considering the influence of eliminating a single incidence from the
formal context in the complexity of building a the new reduced concept lattice.

Simplification of the Structure

Other reduction techniques apply an abstraction of the concept lattice, looking for a
high-level overview that preserves only the essential aspects. This type of techniques
are grouped as simplification methods. In general, these approaches try to build a
simplified context or lattice, by grouping similar objects, attributes or concepts.

Another line of research is the use of matrix factorization techniques which
allow to decompose the formal context into a simpler representation. Most works
[23, 24, 37] in this line use the technique of singular value decomposition (SVD),
which allows to project a high-dimensional matrix into one of lower dimensionality.
The SVD is used to embed objects into an Euclidean space where similarity measures
can be defined, such as the cosine similarity between the vector representation of
objects [23], or induce equivalence classes of objects or attributes.

Another application of matrix factorization, is to find key factors which could
represent, exactly or approximately, an underlying structure in data. The linear com-
bination of these factors is a lossy approximation of the original formal context. Since
the number of factors is usually much lower than the cardinality of the set of objects,
they can be considered as representative rows in the formal context, achieving a
significant reduction and preserving (with a little loss) all the information contained
in the context. Among matrix factorization techniques for context reduction, we can
find non-negative matrix factorization [50] and binary matrix factorization [13].

In other works, the matrix factorization is induced not from the formal context,
but from the concept lattice itself [11, 62], and the aim of those methods is to get
the best representation of the knowledge as a set of factors, which are then called
concept factors [13].

Selection of Attributes and Concepts

The underlying idea is the application of some criterion which quantifies the impor-
tance of attributes and concepts, in order to keep a subset of those with the highest
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relevance. The importance criterion is application-dependent and, thus, varies be-
tween different domains.

There are two different approaches in the selection of attributes and concepts:
select relevant items a posteriori, after the computation of the whole concept lattice,
or make an a priori analysis of a relevance measure and then build the reduced
concept lattice with pre-chosen constraints.

As commented above, the first strategy makes use of the complete concept lattice
to infer the importance of attributes, objects and concepts.

A simple notion of relevance may be related to the cardinality of the intension or
extension of a concept, but more refined definitions include the assignment of weights
[10] to each attribute, and then selecting formal concepts considered relevant. In this
case, the relevance of a concept is calculated as the average relevance of the attributes
in its intension [75]. In [10], it is also proposed the use of minimal generators of
concepts, instead of their intension, to evaluate the importance of a formal concept.

A comprehensive review of interestingness measures of concepts is presented in
[52]. In that work, the measures considered are compared regarding aspects such as
efficiency of computation and applicability to noisy data.

From the algorithmic perspective, a major issue in this strategy is that concepts
must be computed before verifying whether their relevance is above a predefined
threshold, due to the inherent complexity of enumerating all formal concepts.

As asolution to this problem, another research line attempts to pre-select attributes
based on a relevance measure (thus, used a priori) and therefore define constraints
that the computed concepts must fulfill.

The relationship between the notions of frequent formal concept (a concept whose
support is above a predefined threshold) and of (the analogous) frequent itemsets
in transaction databases was exploited in [72] to introduce the Titanic algorithm for
the construction of iceberg lattices. An iceberg lattice consists of frequent itemsets
associated to a predefined minimum support, and is therefore more efficient to build
than the complete concept lattice.

Another method to reduce the complexity of concept and attribute selection is
presented in [14]. In that work, the authors build a general framework for concept
selection, in which the relevance criterion is represented as a closure operator. The
relevant concepts are the fixpoints of the associated closure operator and they form
a complete V-sublattice of the original concept lattice. Several constraints related
to the cardinality of the extent and to the presence or absence of different attributes
are also studied. The proposed method allows to compute the reduced lattice and
extract minimal bases of attribute dependencies as well, with lower computational
effort (polynomial delay complexity), since there is no need to compute all concepts
or pseudo-intents beforehand.

A more recent approach [42] introduces a method for attribute selection in formal
contexts based on the notion of attribute relevance: according to that definition, an
attribute is relevant if and only if it is irreducible in the context. This allows to define
a relative relevance function which captures both the order structure in the concept
lattice and the distribution of objects.
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The relative relevance function is not computationally feasible (it has a high
complexity), so the problem is approximated using ideas from information theory,
defining the Shannon object information entropy of a formal context and its object
information entropy. It is experimentally tested and proved that the use of the entropy
measures is appropriated in contexts with many attributes and reflects the relative
relevance of attributes properly.

As a consequence, in a Big Data problem, this type of mechanisms based on the
pre-definition of a relevance measure (probably based on information theory, due to
its computational efficiency) which allows to restrict the computation of concepts
to only the ones with a higher relevance, presents great potential of use, and can
therefore help develop optimized methods to mine the knowledge in a large formal
context.

9.3 Improved Management of Implications

The computation of closures is one of the core steps when reasoning from an
implication system. It requires to apply repeatedly the implications in the system
(usually the canonical basis) until getting to a fixpoint of the closure operator, which
means it has exponential complexity.

The main reason that forces to apply several times all the implications in the
system in order to compute a closure (causing the high computational complexity)
is given by the application of the transitivity axiom in the logic [4]:

A—B,B—C
A—=C

The transitivity rule somehow reflects the cut rule in other logical systems and,
hence, is not suitable for automation. Even works defining equivalent axiom systems
[5, 43] do not arrive at an appropriate way of handling its inherent complexity in an
efficient manner.

As a consequence, there has been traditionally a necessity of finding efficient
computational methods by modifying the axiom system (to avoid the computationally
expensive transitivity [Tran]) and designing new inference and reasoning methods.

Another way to reduce the computational cost of computing closures is to define
some modified implicational systems, equivalent to the Duquenne-Guigues basis
[41], but with a simpler structure that could be exploited in the calculation of
closures. Although Duquenne-Guigues basis has minimum cardinality, there are
other parameters which can be used to define alternative minimality conditions (e.g.
directness [17, 18]) which, in turn, might have better computational properties.

[Tran]
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Simplification Logic

The investigation on defining axiom systems equivalent to Armstrong’s rules, but
removing the transitivity axiom, led to the idea of the Simplification Logic.

Simplification Logic SLgp [27], and its fuzzy counterpart FASL [9], define a
logic equivalent to Armstrong’s Axioms that avoids the use of transitivity and is
guided by the idea of simplifying the set of implications by removing redundancies,
which can be defined in the following terms:

Definition 9.6 Let K = (G, M, ) be a formal contextand I' = {A — B: A,BC M}
be an implicational system.

* An implication ¢ is superfluous in I" if ¢ can be inferred from I" \. {¢}.

* @ =X — Y is [-redundant in T if there exists 0 # Z C X such that ¢ can be
inferred from (I' \~ {@})U{(X \Z) = Y}.

* @ =X — Y is r-redundant in T" if there exists @ # Z C Y such that ¢ can be
inferred from (I' ~ {@}) U{X — (Y \2)}.

We say that I has redundancy if it has a superfluous, /-redundant or r-redundant
element.

SLrp provides new substitution operators which allow the natural design of
automated deduction methods and new substitution rules which can be used bottom-
up and top-down to get equivalent sets of implications, but without redundancy.

Definition 9.7 The SLgp system has one axiom:

[Ax]

ifYCX
X—=Y

and three inference rules (fragmentation, composition and substitution):
X =Y
§ — {,7 Uu—Vv
[Comp} —_—
XYYy
[Subst] ————— XCUXNY=0
U\NY = V\Y

The corresponding substitution operators associated to the [Subst] rule are given
below.

Definition 9.8 Given an implication X — Y:

* The substitution operator associated to X — Y is defined as:

UNY—=V\Y #XCUXNY=0

Dxy(U—V)= { U—V otherwise
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* The right-substitution operator associated to X — Y is defined as:

. (U= VSY ifXZUXNY=2,XCUUV
Dy oy (U—=V)= { U—V otherwise

The extension to the fuzzy setting was presented in [9]. In that case, the axiomatic
system used the following inference rule (simplification)

XY UV

St S~ S v

instead of [Subst].

The application of these operators generates a simpler implicational system,
removing superfluous and /- and r-redundant implications.

The use of a simplified implication system can have a computational impact when
making inference on massive amounts of data, since the number of operations to be
performed decrease as redundancies are removed. For instance, this logic has proved
to be useful for automated reasoning with implications [25, 28, 29, 59, 60]. However,
the overall complexity of computing a closure remains exponential, in the worst-case
scenario, as is in the case of the Duquenne-Guigues basis.

Direct Bases

One reason for the high complexity in computing closures is the need to make
several applications of a whole implicational system until getting to a fixpoint, due
to the transitivity axiom. It is reasonable to investigate the definition of implicational
systems equivalent to a given one, such that closures can be computed in a single
pass over the implication set [17, 18, 26, 69, 70].

This property for these systems is called directness [17, 18], and can be in-
troduced formally as follows: suppose an implicational system I', over the set of
attributes M, and define the operator 7y : 2M — 2™ as - (X) =X U{b€B|A - B €
I' for some A C X }.

This function 71 is isotone and extensive and, therefore, for all X € 2™, the
chain X, 7r(X), 72 (X),7(X),. .. reaches a fixpoint, and the closure of the set X
coincides with this fixpoint. For specific implicational systems, 7r- is idempotent,
which means that the fixpoint is reached in the first iteration, i.e. with a single
traversal of the implicational system [26].

Thus, inference with this type of bases can be done in a time complexity which
is linear with respect to the number of the implications in the basis.

If, to the condition of a system I" being direct, one adds that both its cardinality
|I"| (number of implications in it) and its size [53] (||| = Xa_per (JA| + |B])) are
minimum among all equivalent systems, an important reduction of the complexity
of computing closures may be achieved.

Definition 9.9 A direct implicational system I is said to be a direct-optimal basis
if, for any direct implicational system I'’, equivalent to I'", one has ||| < ||T”'|.
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It is proved in [17] that, for any implicational system I", there exists a unique
direct-optimal basis I3 =1 .

Direct-optimal bases combine the directness and optimality properties. On the one
hand, directness ensures that the computation of the closure may be done in just one
traversal of the implication set; on the other hand, due to its minimal size provided by
the optimality, the number of visited implications is reduced to the minimum. Due
to these features, it is desirable to design methods to transform an arbitrary set of
implications into its equivalent direct-optimal basis. Thus, the problem of building
a direct-optimal basis is one of the outstanding problems in FCA.

Several schemes have been proposed to compute the direct-optimal basis [17, 70],
by studying the possibility of using unitary implications. In those cases, although
the output implicational system is of higher cardinality (since all conclusions are
unitary), its computation is more efficient.

In the general (n-ary) case, in [69], a simple algorithm to compute such a direct-
optimal basis is presented, based on the sequential application of the rules of the
previous Simplification Logic SLgp. A new rule can be obtained which improves
the overlap rule Ov1 from [18]

A—B,C—D
AU(CNB)—D
the new rule, called strong simplification, can be formally derived from SLgp and

is used iteratively in conjunction with the (right-)substitution operator, leading to
simpler implications.

[ovl] if BNC+# @

A—B,C—D
AU(C~B) =D~ (AUB)

[sSimp] ifBNC # o
Its associated strong-simplification operator is the core of the method to compute
the unique direct-optimal basis.

The complexity of the calculation of such direct-optimal basis is still exponential
in the number of implications in the original implication system in the worst-case.
One may argue that, in this case, there may be no gain in a practical situation.
However, in practice [69], it is asymptotically faster (i.e., when the number of
implications or attributes is increased) with respect to the previous most efficient
algorithm [70].

In addition, note that in this case the computation of closures is reduced to a
single pass over a (larger in size) implicational system. Thus, when reasoning in
a Big Data context, the use of direct-optimal bases may be more efficient. Since
the computationally expensive construction of such a basis can be done offfine, this
overhead does not impact the end user. Then, the main benefit is that the computation
of closures using this basis can be done in the time constraints currently imposed in
Big Data settings.
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Ordered-Direct Bases

Given a set of indexed implications I' = {A; — B;}, 1 <i < n, Adaricheva et al.
[1] introduced an alternative approach to directness, named ordered-directness, in
terms of the ordered iteration operator, which is defined by pr = 7y;, o... f;, where
I; = {A; — B;} for all i.

Analogously to the mr operator, pr has the same computational cost and it
is isotone and extensive. In addition, one can get that, for all X C M, it holds
7r(X) C pr(X), what can lead to a faster convergence to a fixpoint of the chain

X’pF(X)7p12“(X)7

Definition 9.10 [1] An implicational system I is said to be ordered direct if pr is
idempotent, that is, if pr(X) coincides with the closure of X with respect to I, for
allX C M.

In this case, it must be noted that the directness of an implicational system implies
its ordered-directness, but the converse is not always true [1]. In the same work, the
authors propose a new kind of bases, called the D-bases, by using the pr operator.

Definition 9.11 [1] Let I" be a reduced implicational system (that is, ANB = & for
all A — B €T), and let us denote by AIJE the closure of the set A with respect to I".
The D-basis for I' is the pair (I;,I,,), where:

*L={x—y|lyeMxe{y}f x#y}
o[, ={X —>x|X CM,x€M,X is aminimal proper cover of x}

Here, the notion of a set X C M being a proper cover of y € M with respect to

the implicational system I" means that y € le ~ U {x}f-), i.e., the closure of

xeX
X contains y, but no single element x € X has y in its closure. This implies that,

evidently, y € X.
A proper cover X C M of y € M is said to be minimal if, for all other proper cover
Zofy, with Z C U {x}JFr, we have Z C X.

xeX
Note that implications in I, are atomic, that is, both premise and conclusion

are singletons (atoms of M). Implications in I, have unitary conclusion but n-ary
premise.
The next result states that D-bases are actually a subclass of ordered-direct bases.

Theorem 9.2 ([1]) Let I' be an implicational system, with (I,,,I},) its associated
D-basis and let Ip = I, U}, ordered in such a way that, in the ordered iteration
operator pr;,, atomic implications from I, are checked before those of I,. Then Ip
is an ordered-direct basis equivalent to I'.

In addition, if 1,4, is the unitary (relative to conclusions) direct-optimal basis
equivalent to I, then I'p C I,4,.



214 D. Lépez-Rodriguez et al.

D-bases belong to the family of bases whose implications have unitary conclu-
sions. In the mentioned work [1], a method is proposed to extract Ip from any direct
unit basis T4, in polynomial time with respect to the size of I4,, and taking only
linear time (of the cardinality of the produced I'p) to put it into the order assumed in
the previous theorem (atomic implications before n-ary ones).

A further improvement was made in [68], where the idea of aggregating a D-basis
is presented. A D-basis is aggregated if its premises are pairwise disjoint. In that
work, the uniqueness of aggregated D-bases is proved. By using the simplification
logic, the authors propose the fastD-basis algorithm, whose input is an implication
system, not necessarily a direct unit basis, and returns the unique aggregated D-basis
equivalent to it. Also, the authors proved empirically a higher performance with
respect to the previous technique [1].

Running the D-basis in one iteration is more efficient than running a shorter,
but unordered, canonical basis, such as Duquenne-Guigues. There are examples
demonstrating that the canonical basis cannot always be ordered [1].

As stated above, since the computation of an implication basis can be made
offline in practical Big Data scenarios, the main goal in this research line is to obtain
the most adequate presentation of an implication system which allows to perform
the computation of closures fast enough to be used in a real-world application. A
D-basis presents a promising step towards the development of a knowledge engine
completely automated and applicable in real-world situations.

9.4 Minimal Generators to Represent Knowledge

A compact representation of closed sets in a closure system can have an important
impact on the efficient evaluation and construction of implicational bases.

In this sense, minimal generators[8] (or mingens) constitute a key part of the
closure structure, since they represent minimal sets in the underlying equivalence
relation over subsets of the attribute set M.

Definition 9.12 Given a closed set X C M and a set of implications I" over M, a
subset Y C M is called a generator of X if X = Y7, that is, if the closure of Y with
respect to the implicational system I" is equal to X.

Note that any other subset of X containing its generator Y is also a generator of
X. As the set of attributes M is finite, the set of its generators can be characterized
by looking for those with the minimality condition.

Definition 9.13 Let M be a finite set of attributes and I" an implicational system on
M. X C M is called a minimal generator (mingen) if, for all proper subsets ¥ C X, it
holds that Ylf - le

For a given closed set C C M, let us denote as mg(C) the set its minimal generators,
M
therefore mg : 24 — 227,
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Minimal generators [8] were introduced in various fields under various names:
minimal keys in the database field [54], irreducible gaps [41], minimal blockers [64]
and O-free itemsets [21].

The importance of minimal generators is that they store a compact representation
of the knowledge stored in a context. Minimal generators favor the principle of
minimum description length, that is, the best hypothesis for a given dataset is the one
leading to the best compression of the data [40].

A remarkable contribution on the relevance of mingens is that they can be used
to build the iceberg lattice [72] using the Trranic algorithm, a smart procedure that
is able to take advantage of minimal generators (or key sets as they are called in that
work) to generate the concept lattice of minimal generators.

This kind of lattices has been successfully used in several applications, such as the
analysis of large databases, and extracting implications and mining association rules
[32]. This is specially useful when dealing with large datasets, since the algorithm
is able to retrieve mingens with high support.

Also, from this set of minimal generators, we can rebuild all the information that
may be inferred from the context, in the form of an implicational basis. Due to this
compact representation, the derived bases may allow for a better performance of the
reasoning methods.

In [35, 61], some methods for computing the set of mingens have been proposed.
In parallel to these methods, in [57, 58] minimal generators are used to compute
implication bases (on contexts with positive and negative attributes) whose premises
are minimal generators.

In all the previous works, the context was considered as the input of the problem,
that is, the set of minimal generators (and of closed sets) was inferred directly
from the dataset. A more logic-oriented approach was used in [30], where the
presented method allowed to derive the set of mingens from an implication basis,
using the previously mentioned Simplification Logic, instead of using the context
as starting point. This complete and precise specification allows for faster managing
the semantics of the information contained in the dataset.

Another technique was developed in [28], where the MinGen algorithm was
designed to build a search tree space (of the implications) that can be traversed
(using inference rules) to find all the minimal generators. This shape of the search
space limits its execution for medium-sized problems, because of the overwhelming
requirements of the sequential MinGen algorithm.

In order to get this algorithm working in medium-sized problems, in [16] the
authors present an efficient reduction of the search space technique to improve the
performance of the enumeration of mingens. The new method was designed to
fit the Map-Reduce architecture, and thus parallel computation makes it possible
to deal with large datasets. As the authors state in their work, “the empirical study
proves the very significant improvement achieved w.r.t the original sequential version.
The parallel methods to compute minimal generators can make really usable these
methods in practical applications.”

As commented before, minimal generators can be used to rebuild an implication
basis. To this end, the notion of labelled set of items is introduced:
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Definition 9.14 [28] A labelled set of items (LSI) is a collection @ = {(A;,B;)},
where A; C M and B; C 24 such that if X, Y €eB;withX CYthenX =Y.

Particularly, for an arbitrary set of implications I", we can consider the LSI
@ = {(C, mg(C)) | Cisaclosed set under I'} of special interest, since it can be
used [29] as input to a procedure aimed to extract a so-called left-minimal basis,
defined as follows.

Definition 9.15 An implicational system I' is a left-minimal basis if there is no
A—Bel and A’ C A such that '\ {A — B} U{A’ — B} is equivalent to I". In
addition, I is direct if, for all A — B € I'", one has that AU B is closed with respect
torl.

In other words, a left-minimal direct basis is a set of implications where premises
are minimal generators and the corresponding conclusions are their associated closed
sets. Such a left-minimal direct basis has the minimality property of canonical bases,
and the characteristics of the implications described before: minimal information in
the left hand side and a fast computation of closures.

In order to compute the basis, the following result, given in [29], states that two
aggregation operators can be used iteratively.

Theorem 9.3 Let T = {(M;,A; — B;) ...} be a set of pairs with minimal generators
and implications obtained from minimal generators and closed sets. The exhaustive
application of the two following aggregation rules:

o I[fACC, then {A— B,C—D}={A— B,BUC — D~ B}.
o[fACCCAUB, then{A—B,C —D}={A— BUD}.

produces a left-minimal direct basis.

Using this result, Cordero et al. propose in [29] an extension of the algorithm
designed to compute the Duquenne-Guigues basis [12, 41], in order to obtain the
left-minimal basis. This algorithm runs in polynomial time on the length of the LSI
used as input. The first step is to compute an implication set from the LSI of the
minimal generators (as the one described in the previous theorem) and, then, apply
the aggregation rules to manipulate the implications and obtain a left-minimal basis.

9.5 Probably Approximately Correct Implication Bases

Current algorithms to find implication bases have an enormous overhead since they
have to find all closed sets as a necessary step in their execution. This has led to
another research line in which the exactness of the implication basis to be found is not
considered as fundamental, that is, it is allowed to have non-exact or non-complete
but representative and informative bases.

Besides this difficulty in computing implication bases, there is another more
practical reason to relax the constraint of having exact implications: real-world
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datasets are generally noisy, containing errors and inaccuracies, therefore computing
exact implication bases from such datasets may be useless or even a nonsense. In this
case, a rather pragmatic approach is to consider implications as strong association
rules and then use highly optimized association rule algorithms [2], but the number
of resulting implications increases even more.

Some works [6, 19, 20] have studied approximations of the exact implication
basis, taking into account that such bases should have a controllable error, otherwise
they become useless. Their proposal is, instead of calculating large exact bases, to
compute approximately correct bases that could capture most of the implicational
theory of a given dataset (or at least the most essential parts) but are easier to
compute.

It can be said [20] that a set €2 of implications is an approximately correct basis
of the formal context K if most closed sets of €2 are closed in K and vice versa.
The formal idea behind this intuition on approximate bases is to define a measure of
proximity between sets of implications in terms of their closed sets. Thus, the key to
build approximate bases is to define a distance between closure operators.

In [6], one can find initial results on approximate bases and some experimental
evaluations, and a set of implications €2 is defined as an approximation of another
set I' if the closure operators of both coincide on most subsets of the attribute set M.
This measure can be defined in terms of the cardinality of {S C M : Q(S) #I'(S)},
being 2(S) and I'(S) the closures of S with respect to both sets of implications. This
can be understood from the application point of view, since that definition ensures
that, in most cases, operating with I and with €2 will provide the same closures.

This work has been extended to the idea of building probably approximately
correct bases (PAC bases) in [20], which are approximately correct with high prob-
ability. This notion gains strength, since PAC bases can be computed in polynomial
time. In this new approach, the concept of approximation is slightly different from
the one in [6]. €2 is an approximation of I" if and only if the number of closed sets in
which Q and I" differ is small. More precisely, they define an approximately correct
basis as follows.

Definition 9.16 [20] Let M be a finite set and let K = (G, M, I) be a formal context.
A set of implications €2 is a approximately correct basis for K with accuracy € > 0
if

QK = |cl(Q;@|cl(K)|

where cl(£2) and cl(K) are the sets of closed sets of €2 and K, respectively, and
S1AS, represents the set symmetric difference of S} and S,. d(Q,K) is called the
Horn distance between € and K.

And, from this definition, they build the idea of a PAC basis as follows.

Definition 9.17 [20] Let M be a finite set and let K = (G, M,I) be a formal context,
let Imp(M) be the set of all possible implications between the elements of M, and
let & = (#,&,Pr) be a probability space. A random variable Q : & — 21mp(1) jg
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called a probably approximately correct basis (PAC basis) of K with accuracy € > 0
and confidence 0 > 0 if Pr(d(Q,K) > ¢) < 6.

The computational efficiency of this approach comes from the fact that it is a mod-
ified version of the Horn algorithm [3], making use of membership and equivalence
oracles (playing the role of domain experts), which allows to compute PAC bases in
polynomial time in size of M, the output €2, as well as % and % (¢ and O are inputs
to the algorithm), provided that the invocations of the oracles are counted as single
steps [20]. In this work, the authors test the usability of PAC bases in real-world
situations, comparing several measures of the practical quality of the approximation:
the Horn distance between the canonical basis and the approximating bases, and the
usual precision and recall measures, defined as follows:

Definition 9.18 [20] Let M be a finite set, let K = (G, M, I) be a formal context and
let I be the canonical basis of K. The precision and recall of a basis €2, are defined
as:

{(A—=B)eQ: T EA— B}
2]

prec(K, Q) =

{(A—B)el:Q =A— B}|

recall(K, Q) = T

From this definition, precision measures the fraction of valid implications in the
approximating basis, and recall measures the fraction of valid implications in the
canonical basis I" that follow semantically from the approximating basis £2.

It has been found [20] that increasing the value of € in the algorithm always
leads to a considerable increase in the Horn distance, meaning that the PAC basis
deviates more and more from the canonical basis. In addition, the theoretical upper
bound & for the Horn distance between €2 and the canonical basis is never realized in
their experiments, meaning that the obtained PAC basis is indeed much closer to the
canonical basis than what the algorithm is theoretically designed to obtain. Lastly,
for small values of € (the choice of § seems to have little impact in the experimental
results), both precision and recall are very high, i.e., close to one, what means that
the algorithm is able to retrieve most of the canonical basis, and that most of the
implications of €2 are valid.

The important result that PAC bases can be computed in output-polynomial time
opens the way to decrease the long running times of the algorithms to compute exact
implication bases. Thus, this is a promising line in the integration of FCA techniques
into Big Data situations, as the applicability of the former to larger datasets become
feasible.
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9.6 Summary and Possible Future Trends

As stated above, there are important reasons which suggest the convenience of further
developing logical methods for FCA if we are targeting big datasets: the main issues
here are the explainability and interpretability, which are inherent to logic-based
methods but are missing in the usual machine learning tools for Big Data.

In this work, we have surveyed some trends in FCA that could be of potential
application in Big Data settings, many of them are focused on alleviating the high
computational cost of current methods to build the concept lattice, to find a basis of
implications and to reason with it.

First, we have considered some techniques to remove redundant information in a
formal context, such as clarification and reduction, or the search for reducts through
the computation of the discernibility matrix. The aim of these techniques is to build
a simpler formal context, with exactly the same closure space as the original one,
where computations are less expensive since the number of objects or attributes is
reduced. The techniques based on the discernibility matrix are, in the best case,
equivalent to clarification and reduction, but with a complexity that is exponential
in the worst case. Thus, it depends on the particular application which of the two
approaches is more suitable.

Other techniques, based on matrix factorization methods, study the problem of
simplifying the structure of the formal context, preserving most of the information,
but not all.

The selection of relevant attributes (and concepts) is another open problem, since
the measure of relevance is application-dependent. In this sense, the Titanic algorithm
is used to build iceberg lattices which consists only of concepts with support above a
predefined threshold. Since it is more computationally efficient than computing the
whole concept lattice, it is potentially applicable to real-world Big Data problems.

With respect to the ability to reason and make inference using implication systems,
there is a blocking issue which makes the use of logic tools difficult in Big Data.
The presentation of an implication system, together with the axiomatization of the
logic (more precisely, the transitivity axiom), makes the computation of closures
in Big Data an unsolved issue. We have collected some mechanisms which could
potentially help reduce the computational overhead of using logic in Big Data. First,
the Simplification Logic can be used to remove atomic redundancies in implication
systems. The axiomatization of the Simplification Logic removes the need of the
transitivity axiom, thus providing a mechanism to get simpler implication systems
which could be traversed in a more efficient manner.

In this direction, other types of implication bases are defined. Particularly, direct,
ordered-direct and D- bases are implication bases, equivalent to the canonical basis,
which only require a single pass over the implication set to compute a closure. Since
the computation of one of these implication bases can be made offline in practical
Big Data scenarios, an adequate presentation of the implication system which allows
to perform the calculation of closures with enough speed could be used in practical
real-world situations.
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Regarding the presentation of the knowledge, a compact representation of the
closure system of a Big Data formal context can be useful. In this line, minimal
generators are at the core of the closure space, and they have been used (e.g. in
the Titanic algorithm) to compute simplified versions of the concept lattice, and to
rebuild all information that can be inferred from the context.

The last line that has been explored in this work is the computation of approx-
imately correct implication bases. Since in practical situations it may be neither
advisable nor useful to compute a complete basis of exact implications, due either
to the prohibiting computational cost or to the noise that might be present in data,
it is more pragmatic to capture just most of the implication theory. This is the idea
behind approximately correct bases, which tend to cover most of the closure space
of the canonical basis, with valid implications.

This idea has been extended to present probably approximately correct bases,
which are approximately correct with high probability. In this approach, the main
strength is that, by using oracles in the role of domain experts, this kind of bases can
be computed in polynomial time. Also, experimentally, PAC bases have presented a
good practical quality, in terms of its similarity to the canonical basis.

Certainly, the computational complexity of many problems easily exceeds the
tractability threshold (i.e. makes FCA unusable in real-world Big Data problems),
hence it makes no sense to expect a complete logic-driven FCA approach; but, what
about trying to hybridize techniques? One could wonder to develop, firstly, formal
and logic-driven methods up to certain level and, then, applying machine learning
techniques, making use of alternative data structures and parallelization techniques.
It could be worth to further push the research line of using neural networks to
implement the closure operators directly from the context.

Continuing with this line, further development of reduction methods for the
contexts is essential, and here, one could consider, for instance, approaching the
dimensionality reduction via principal components analysis (PCA) in terms of fuzzy
computing instead of numerical PCA. Since PCA is a space decomposition technique,
it may be interesting to study how it could be applied to decompose a closure space
or a formal context to reduce the computational overhead of present methods. In this
case, it is worth remarking that the precise computation of a fuzzy concept lattice is
more complex than in the crisp case but, following the analogy with fuzzy control,
which has proven to be successful to handle very complex systems, it could be
interesting to approach FCA by computing in terms of linguistic variables.
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