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6.1 INTRODUCTION 

Magnetic Resonance (MR) imaging is commonly used in medical procedures and 
diagnoses since it is a non-invasive technique that provides excellent soft-tissue 
contrast images. It does not require the use of ionizing radiation, together with full 
three-dimensional capabilities. Moreover, MR imaging allows performing func-
tional, diffusion, and perfusion imaging. 

Magnetic resonance images (MRI) with high-resolution (HR) can provide rich 
anatomical details, crucial for reliable computer-aided radiological diagnosis and 
image post-processing. Notwithstanding continuous improvements in the acquisi-
tion technology, it is common to detect artifacts in the obtained image. The most 
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common of these are blurring and the appearance of noise, limiting the quality of 
the produced images. 

Besides the practical and operational limits to the acquisition time, the specific 
MR technology and the tissues’ magnetic properties cause the image resolution to 
fall in the order of millimeters. 

Hardware limitations, high signal-to-noise ratios (SNR), and patient motion 
(even the occasioned by heartbeat or by the patient’s breathing) also limit image 
resolution. Note that MRI data is usually obtained with different voxel sizes in the 
typical clinical setting depending on the acquired modality. In particular, the in- 
plane resolution is usually higher than the out-plane one (i.e., in the slice direction), 
producing non-isotropic voxel sizes (i.e., rectangular voxels). 

There are some recent studies on critical problems due to the use of low- 
resolution (LR) images. In Mulder et al., (2019), the authors investigated voxel 
geometry’s influence by imaging simulated elliptical structures with voxels varying 
in shape and size. For each reconstructed structure, the authors calculated and 
analyzed the differences in volume and similarity between the labeled volume and 
the ellipsoid’s predefined dimensions. As a result, the authors find that larger voxels 
typical of coarser-resolution images, and increasing anisotropy, end in more sig-
nificant deviations of both volume and shape measures, clearly demonstrating the 
anatomical inaccuracies introduced in LR images. 

Small but clinically important lesions in the brain may be challenging to 
visualize or characterize correctly when inspecting low-resolution MRIs. 

Besides, the increasing use of functional imaging to examine intratumoral het-
erogeneity has led to a clinical need for improved spatial resolution for these 
inherently LR sequences. 

Therefore, in some cases, the acquired images need an upsampling to decrease 
the voxel size and obtain higher resolution images, which will be post-processed 
or analyzed. 

6.2 SUPER-RESOLUTION: DEFINITION 

The formation of the LR image from an HR image follows a degradation model 
I D I= ( ; )LR HR , where the degradation operator D acts on the HR image and whose 
parameters are represented by . 

This degradation function D is usually defined as a sequential composition of 
blurs, downsampling, and the addition of noise. A complete model considers all 
these choices. The result is the following model (Zhang et al., 2018): 

I b I= ( ) +LR HR s (6.1)  

where b I represents the convolution between a blur kernel b and a latent HR 
image I, s is a subsequent downsampling operation with scale factor s, and 
usually is additive white Gaussian noise with standard deviation (noise level) . 

Image super-resolution aims at reconstructing the corresponding HR images 
from the LR images. We present a formal definition of the problem below. 
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Let us consider a three-dimensional (low-resolution) image ILR where, without 
loss of generality, we will assume that voxel coordinates are linearly spaced in 
a cubic grid with (0, 0, 0) as one vertex and the opposite vertex is given by 
D D D( , , )x y z . Voxel spacing is characterized by a vector h h h( , , )x y z , where hs in-

dicates the distance along the s-axis between the centers of two adjacent voxels. 
This means that voxel coordinates can be expressed in the form n h n h n h( , , )x x y y z z

for some n n n N, ,x y z . 
The problem of super-resolution consists of determining an image IHR with 

spacing h h h( , , )x y z for some (0, 1) and such that I I=HR LR in all the voxels 
where their corresponding grids coincide. The lower the value of , the finer the 

resolution of IHR is. The inverse of , 1 , is usually referred to as zoom factor and 

generally takes integer values. Using the “times” notation, commonly used zoom 
factors are 2x, 3x, 4x… 

Note that this problem is ill-posed (López-Rubio, 2016) since, as it is defined, the 
solution is not unique. Multiple high-resolution images IHR can be degraded to the 
same ILR. 

6.3 PREVIOUS WORKS 

This section aims to give a comprehensive and brief overview of previous works in 
image super-resolution (SR). The process of generating high-resolution (HR) 
images from low-resolution (LR) images can be performed using a single image or 
multiple images. Most of the existing literature surveys are mainly focused on 
single image super-resolution, which has been extensively studied and reviewed in 
the following subsections. Additionally, in the next section, we provide an overview 
of recent advances in SR for higher-dimensional images (such as 3D scans). 

SR methods can be divided into two main categories: traditional and deep 
learning methods. The former methods have been studied for decades, but now they 
are outperformed by the deep learning-based approaches, which have shown pro-
mising results in other fields in artificial intelligence, such as object classification 
and detection, natural language processing, audio signal processing, etcetera. 

6.3.1 TRADITIONAL METHODS 

The classical way of obtaining an SR image is by polynomial interpolation, which 
represents an arbitrary continuous function underlying the discrete samples that 
make up the LR image. In general, traditional SR methods are broadly classified as 
techniques based on the frequency domain, interpolation, or regularization, where 
the last two approaches are based on the spatial domain. 

The methods based on the frequency domain are an intuitive way to enhance 
the details of the images by extrapolating the high-frequency information of LR 
images. These methods consist of transforming the input LR image(s) to the 
frequency domain, estimating the HR image, and then transforming back the HR 
image to the spatial domain. In general, we can divide these methods into two 
groups according to the transformation employed: algorithms based on Fourier or 
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wavelet transformation. Detailed explanations of these techniques and a list of 
different provided approaches in the literature are described in Nasrollahi & 
Moeslund, (2014). 

The approaches based on the interpolation construct an HR image by projecting 
all the information available from LR images. Usually, this reconstruction process 
consists of the following steps: image registration, multi-channel restoration, image 
fusion, and image interpolation. These techniques and the numerous algorithms 
available in the literature for image interpolation and SR are addressed in (Abd El- 
Samie et al., 2012), where several chapters are devoted to each stage, including 
simulation experiments along with the MATLAB code. 

Regularization-based methods consist of incorporating the prior knowledge of 
the unknown HR image by using a regularization strategy. This information can be 
extracted from the LR images, which is contained in the probability distribution of 
the unknown signal (HR image). From the Bayesian point of view, the HR image 
can be estimated by applying Bayesian inference to exploit the information pro-
vided by the LR images and the prior knowledge of the HR image. More details 
about the different regularization strategies provided in the literature and the related 
references are described in (Tian & Ma, 2011). 

In the literature, a great variety of classical SR methods have been proposed, 
where most of them are surveying at several works (Abd El‐Samie et al., 2012;  
Nasrollahi and Moeslund, 2014; van Ouwerkerk, 2006; Shah and Gupta, 2012; Tian 
& Ma, 2011). These surveys also provide different taxonomies covering all the 
types of traditional SR techniques and comparative discussions of the different 
methods. 

6.3.2 DEEP NEURAL NETWORKS 

SR models based on deep learning (DL) have been actively explored in recent years 
due to the rapid development of DL techniques, which have outperformed the state- 
of-the-art algorithms on various SR benchmarks. A great variety of DL methods 
have been proposed in the literature, which can be classified according to the most 
distinctive features in their model designs (e.g., network architecture, loss function, 
learning principles and strategies, etcetera.). Additionally, several taxonomies have 
been recently proposed (Anwar et al., 2020; Wang et al., 2020), covering the recent 
advances of SR techniques based on DL systematically and comprehensively. 

Most of the existing SR works based on DL are focused on supervised learning, 
i.e., these models are trained with both LR images and the corresponding HR 
images. A taxonomy for these models grouped into nine categories is proposed in 
(Anwar et al., 2020), where a comparison between these models in terms of network 
complexity, memory footprint, model input and output, learning details, type of loss 
functions, and other architectural differences are also presented. 

The Super-Resolution Convolutional Neural Network (SRCNN) was the pio-
neering work (Dong et al., 2014) using DL techniques that inspired several later 
works. Basically, it consists of convolutional layers where each layer is stacked 
together linearly with Rectified Linear Unit (ReLU). The functionality of these 
layers is different, and it varies from the feature extraction of the first layer to the 
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aggregation of the features maps to the final HR image of the last layer. This model 
is trained by minimizing the difference between the reconstructed HR image and 
the ground truth HR image using Mean Squared Error (MSE). This is the earliest 
and simplest network design, which can be categorized as linear networks due to 
the linear network architecture. In this direction, several works can be found in the 
literature: a fast version (FSRCNN) which improves the speed and quality 
achieving a real-time rate (24 fps) of computation (Dong et al., 2016), and another 
fast SR approach using an efficient sub-pixel convolution capable of processing 
1080p videos in real-time (Shi et al., 2016). 

In addition to the above models, other further improvements have been pro-
posed, which essentially differ in some components such as model frameworks, 
up-sampling methods, network design, or learning strategies. These works are 
addressed in (Anwar et al., 2020), which can be divided into several categories, 
including linear networks, residual networks, recursive networks, progressive 
reconstruction designs, densely connected networks, multi-branch designs, 
attention-based networks, multiple-degradation handling networks, and generative 
adversarial networks (GAN). 

In general, most of the state-of-the-art SR models can be attributed to a 
combination of multiple strategies like the channel attention mechanism, sub- 
pixel up-sampling, residual learning, etcetera. These models are mostly focused 
on supervised learning, i.e., learning with LR-HR image pairs. However, in some 
real-world scenarios, it is not easy to collect images with different resolutions. 
Thus, datasets are constructed by performing some predefined degradations on HR 
images (and obtaining the paired LR image). The main drawback of these datasets 
is that the trained SR models actually learn a reverse process of the predefined 
degradation instead of the real-world LR-HR mapping. To avoid this behavior, 
unsupervised SR is needed, where only unpaired LR-HR images are provided for 
training. A summarized table including some representative models with their 
key strategies is provided in Wang et al. (2020), where unsupervised SR models 
are also discussed. 

Apart from the above general SR works, there exist some other popular 
domain-specific applications where SR can serve to advance in those fields. 
Medical imaging is one of these fields which is rapidly evolving in increased 
resolution devices, demonstrating the potential of SR research into practical 
medical applications. Besides the existing SR works in medical imaging 
(Greenspan, 2009), recent promising advances to apply SR techniques in medical 
imaging applications are reviewed in the next section. 

6.4 IMPROVED DEEP LEARNING METHODS 

The enhancement of the results of deep learning super-resolution methods for 
3D MRIs can be accomplished in two distinct ways. We consider these alter-
natives next. 

First, it is possible to modify the architecture of the deep network in order to 
improve its super-resolution performance. There are several possibilities to do 
this, including the insertion or deletion of neural layers, the modification of the 
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number of channels in the neural layers, a change in the stride parameter of the 
convolutional layers, etcetera. A novel strategy to obtain a better performing 
architecture consists of changing the loss function, as proposed in Thurnhofer- 
Hemsi et al. (2019) and Thurnhofer-Hemsi et al. (2020a). The standard loss 
function for super-resolution deep learning networks is the squared Euclidean 
norm of the difference between the high-resolution version of the original image 
(the ground truth) and its reconstruction that the network produces as output 
(the estimation). While the squared Euclidean norm has demonstrated its suit-
ability for many purposes, some improvements can be obtained by employing 
other alternatives. 

A possible alternative is the family of Lp norms. The members of this family are 
characterized by a parameter p that specifies to which power the absolute value of 
the error is raised. The value p = 2 corresponds to the usual squared Euclidean 
norm. On the one hand, higher values (p > 2) give more importance to extreme 
values of the absolute error. This is not convenient since there can be a small 
number of voxels in the MRI with gross errors or irrelevant features, which could 
have an outsized influence on the learning of the deep network parameters. On the 
other hand, smaller values (p < 2) give less importance to outliers than the standard 
squared Euclidean norm. Therefore, they are more promising to yield appropriate 
loss functions for super-resolution since they provide robustness with respect to 
outliers. Consequently, in Thurnhofer-Hemsi et al. (2019), the usage of Lp norms 
with p < 2 for 3D MRI super-resolution is proposed. It must be remembered that 
the mathematical definition of norm includes three conditions that must be fulfilled: 
non-negativity, linearity with respect to a multiplying factor, and the triangle in-
equality. The last condition is only held for p 1. Given these considerations, Lp 
norms with values of p in the range p1 2 are studied. 

The derivation of a learning rule for an Lp norm is based on the definition of a 
loss function as the sum of the Lp norms of the absolute errors for all samples. Then 
the partial derivatives of the loss function are calculated with respect to the synaptic 
weights. Finally, the stochastic gradient descent method is employed in order to 
obtain a procedure that adaptively modifies the synaptic weights to minimize the 
loss function. 

The usage of an Lp norm with p < 2 as the loss function can increase the re-
silience of the deep network to outliers. Nevertheless, there is the risk that the 
learning procedure does not pay enough attention to significant errors. In order to 
reconcile both requirements, it is proposed in Thurnhofer-Hemsi et al. (2020a) that 
a multiobjective optimization is carried out to learn the synaptic weights of the deep 
network. This is accomplished by setting two goals to be optimized. The first one is 
the minimization of the standard squared Euclidean norm, while the second one 
is the minimization of a suitable Lp norm with p < 2. In order to implement this 
method in practice, the scalarization strategy is advocated to obtain a single loss 
function out of the two norms. Two variants of scalarization can be applied to 
this purpose. The first one is weighted sum scalarization (Gass & Saaty, 1955). This 
is a straightforward approach where the multiobjective loss function is given as 
the weighted average of the squared Euclidean norm and the Lp norm. Here the 
weighting factors for the norms must be adjusted from the data. The second 
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scalarization variant is weighted Chebyshev scalarization (Gong, 2011). This is a 
more elaborate approach that requires the estimation of an ideal point, which is an 
ordered pair formed by the minimum of the first norm and the minimum of the 
second norm, both computed over the full domain of both norms. The multi-
objective loss function is then defined as the weighted Chebyshev distance to that 
point, where again we have two weighting factors that must be adjusted. For the 
purposes of combining the squared Euclidean norm and an Lp norm, the (0,0) point 
can be employed as the ideal point since neither of them can be negative. After the 
multiobjective loss function has been selected, the methodology proceeds as before. 
In other words, the partial derivatives of the loss function with respect to the sy-
naptic weights are calculated, followed by its minimization by the stochastic gra-
dient descent method. 

The second family of methods to enhance the performance of deep convolutional 
neural network-based super-resolution of 3D MRIs is based on the combination of 
the output images obtained for shifted versions of the original input image. The 
rationale behind this strategy is that the behavior of the convolutional network is 
slightly different for those versions of the input, so that merging the associated 
outputs may remove the defects which are present in a minority of such outputs. In 
other words, a consensus image is built from the individual output images. Since the 
output images are shifted by the same displacement vector as its associated shifted 
input, it is necessary to undo the shift on each output image prior to the construction 
of the consensus image. 

Two approximations can be distinguished for this shifting and consensus 
strategy. The first one is presented in Thurnhofer-Hemsi et al. (2018), and it is 
called random shifting. Here the displacement vector is modeled as a random 
variable that is uniformly distributed over a cube of possible integer displace-
ments. Then the mathematical expectation of the unshifted output image is es-
timated over the distribution of the displacement vector, which is to be taken as 
the consensus final image. This estimation is carried out by averaging the un-
shifted images for a sample of randomly drawn displacements. As the number of 
samples tends to infinity, by the law of large numbers, it is known that such 
estimation converges to the true value of the mathematical expectation. 
Therefore, the more samples that are considered, the more accurate the con-
sensus image is expected to be. This is because the mathematical expectation of 
the unshifted output image has no dependency on a specific displacement vector, 
while the unshifted images depend on the displacement vectors that have been 
used to produce them. Under this approach, two parameters must be optimized, 
namely the size of the cube of possible integer displacements and the number 
of samples. 

The second approximation to shifting is given in Thurnhofer-Hemsi et al., 
(2020b). In this case, an underlying function is assumed to exist that takes the 
displacement vector as an argument and outputs the high-resolution 3D MRI. 
This underlying function is defined on the set of possible displacement vectors. In 
order to approximate the function, a regular lattice of displacement vectors is 
considered. This means that the procedure has two tunable parameters, namely 
the pixel stride that defines the distance between two consecutive points in the 
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lattice and the side of the cube of points in the lattice that will be considered. 
After these parameters are determined, the final consensus image is built by 
averaging the output images corresponding to the displacements that are asso-
ciated with the points of the lattice within the chosen cube. This way, a zeroth- 
order approximation of the underlying function is implemented. 

As shown above, the Lp norm and the multiobjective optimization approaches 
involve the proposal of new deep learning schemes, as shown in Figure 6.1. On the 
contrary, the random shifting and the regular shifting approaches are metamethods 
that can be applied to any 3D super-resolution deep learning architecture, which 
implies that they can enhance the results of new architectures as they are proposed. 

6.5 EXAMPLES AND COMPARISONS 

This Subsection describes several experimental issues such as the methods and 
datasets that can be employed in the experiments, the measures used to yield 
the performance of a selected method, or how to assess a fair analysis about the 
comparison between the competitor methods. Additionally, experiments have 
been carried out in order to evaluate the performance of each method. 

6.5.1 METHODS 

As previously mentioned, many algorithms that face the field of super-resolution of 
3D Magnetic Resonance images can be found in the literature. Here some of them 
are presented:  

• Spline. Bicubic spline interpolation as implemented in MATLAB 
(Mathworks Inc.). 

• NLMU (non-local means upsampling) (Manjón et al., 2010). A sub-
sampling coherence constraint combined with a data-adaptive patch-based 
reconstruction is used to recover some high-frequency information. It has 
been written in MATLAB. 

• LRTV (low-rank total variation) (Shi et al., 2015). This method em-
ploys low-rank regularization and total variation techniques to integrate 
both local and global information for image reconstruction. It has been 
developed in MATLAB. 

3D SR image3D LR image CNNShifting

CNN

p-norm loss layer

Re-shifting

FIGURE 6.1 General overview of the latest super-resolution proposals.    
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• SRCNN3D (Pham et al., 2017). A three-dimensional convolutional neural 
deep network has been trained with patches of HR brain images. It predicts 
a mapping from the LR space to the missing high-frequency components. 
This method is implemented in Python by using the Caffe package 
(Jia et al., 2014). A pre-trained network is available on its website. This 
model has been trained with ten images (in particular, images 33–42) from 
the Kirby dataset (Landman et al., 2011) over 470,000 iterations. Other 
parameters of that training process were a learning rate of 0.0001, a batch 
size of 256, and a momentum of 0.9, while the chosen model optimization 
was the stochastic gradient descent.  

• SRCNN3D+RegSS (Thurnhofer-Hemsi et al., 2020b). A convolutional 
neural network is combined with a regularly spaced shifting mechanism 
over the input image. It has been implemented in Python.  

• SRCNN3D+RndS (Thurnhofer-Hemsi et al., 2018). This method is a 
previous version of the SRCNN3D+RegSS approach based on the use 
of a random shifting technique.  

• SRCNN3D-i50K-WCS, SRCNN3D-i50K-WSS (Thurnhofer-Hemsi et al., 
2020a). They use a combination of Lp-norms in the loss layer where two 
multiobjective optimization techniques are employed to combine two cost 
functions: Weighted sum scalarization (WSS) and Weighted Chebyshev 
scalarization (WCS). The chosen convolutional neural network is the 
SRCNN3D method. In this case, that was trained over 50,000 iterations.  

• SRCNN3D-i50K-p1.9, SRCNN3D-i50K-p2 (Thurnhofer-Hemsi et al., 
2019). They are previous versions of SRCNN3D-i50K-WCS and 
SRCNN3D-i50K-WSS methods. They are based on the use of a p-norm 
loss layer to improve the learning process. Two versions with p = 1.9 and 
p = 2.0 are used in the experiments. Again, the chosen network is 
SRCNN3D, and it was trained over 50,000 iterations. 

6.5.2 DATASETS 

The experiments should be performed on well-known datasets, public if possible. 
Some datasets which can be found in the literature are:  

• Kirby 21 (Landman et al., 2011). In particular, two T1-weighted MRI 
images of this dataset (10 and 11) were used in the experiments. These 
data were acquired on a 3-T MR scanner with a 1.0 × 1.0 × 1.2 mm3 voxel 
resolution over a field-of-view (FOV) of 240 × 204 × 256 mm acquired in 
the sagittal plane.  

• OASIS (Marcus et al., 2007). Specifically, experiments use two T1 images 
of this dataset (images 1 and 2 of the cross-sectional data). These data were 
acquired on a 1.5-T Vision scanner with a 1.0 × 1.0 × 1.25 mm3 voxel 
resolution over a FOV of 256 × 256 mm.  

• IBSR (Worth, 2010). In the subsequent experiments, an image from this 
dataset is used. The features of this image are a size of 256 × 256 × 128, 
with 1.5 × 1.0 × 1.0 mm3 voxel resolution. 
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• CIMES. A T1-weighted image was acquired at the Medical Research 
Center of the University of Malaga (CIMES) using a 3-T MR scanner with 
a 0.93 × 0.93 × 1.0 mm3 voxel resolution over a FOV of 256 × 256 mm. 

Images used in the experimental test step must be different from those used to train 
the methods to establish a fair comparison. 

All these datasets are formed by HR images. Due to the aim of described 
methods is to generate an HR image from an LR image, the HR images from the 
datasets are downsampled to obtain an LR version of them. The procedure to 
achieve these LR datasets is as follows. First, in order to avoid fractional values, HR 
images are cropped regarding the zoom factor to be applied. Then, a three- 
dimensional Gaussian filter with a standard deviation equal to 1 is applied. Finally, 
the LR image is generated by carrying out a downsampling method. This method 
can be an interpolation function such as the nearest neighbor approach, bicubic or 
bilinear interpolations, among others (Molina-Cabello et al., 2020). Some of these 
mentioned methods can be used through the imresize3 function of MATLAB. In 
particular, a cubic interpolation has been used in the experiments shown 
subsequently. 

6.5.3 MEASURES 

In order to compare the goodness of several competitor methods between them, 
several quality measures may be used to evaluate the performance of each method. 

From a quantitative point of view, some quantitative measures may be con-
sidered. In particular, in the experiments carried out in this work, three well-known 
measures have been selected:  

• Peak Signal-to-Noise Ratio (PSNR). It is measured in decibels (dB). 
Higher is better. 

PSNR
peak

Y Y
= 10

ˆ

2

2
(6.2)  

• Structural Similarity Index (SSIM) (Wang et al., 2004). It measures the 
structural similarities between images. Higher is better. It is defined as 
follows: 

SSIM x y
c

c c
( , ) =

(2 )(2 + )

( + + )( + + )
x y xy

x y x y

2

2 2
1

2 2
2

(6.3)  

• Bhattacharyya coefficient (BC) (Bhattacharyya, 1946). It is focused 
on the closeness of the two discrete pixel probability distributions 
P and P̂ corresponding to the ground truth (GT) and restored images 
with values in the range [0,255]: 
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BC P j P j= ( ) ˆ ( )
j=0

255

(6.4)  

Other measures may be evaluated, such as CPU time. 
Regarding a visual or qualitative point of view, besides the restored image 

produced by each competitor method, the residual image is also employed in the 
comparison. This residual image r is computed as the difference in absolute value 
between the original HR image h and the restored one s: 

r h s= (6.5)  

Due to that difference might be close to zero, a darker residual image implies better 
performance. In the shown experiments, color maps were adjusted to obtain better 
visualization and discrimination between competitors. 

6.5.4 RESULTS 

Next, some experimental comparisons between the previously mentioned state-of- 
art methods are summarized. 

First of all, we measure the performance from a quantitative point of view. Thus, 
employing the MPRAGE, IBSR, and CIMES images, we computed the mean and 
standard deviation of the PSNR, SSIM, and BC, and the results are presented in 
Figures 6.2 and 6.3. Within the deep networks, we should differentiate two groups 
of methods: SRCNN3D and SRCNN3D-i50K. The first has been trained for a larger 
number of iterations, 470,000, while the second for only 50,000. That’s because the 
authors used a pre-trained model, which required a long time to be completed. 
Therefore, the results of the SRCNN3D-i50K based methods may not be good 
enough as the others, so a specific analysis is going to be done. 

The first thing the reader can observe is the considerable difference between the 
deep neural network-based methods (SRCNN3D) and traditional methods (Spline, 
LRTV, NLMU). In Figure 6.2, where the results for zoom factor 2 are depicted, the 
general accuracy of the latter is clearly behind the newest ones in the three metrics. 
The shifting techniques proposed by Thurnhofer-Hemsi et al. (2018, 2020b) re-
ported the best results for PSNR and SSIM and the second best with the BC. 
Nevertheless, the WCS and WSS-based methods (Thurnhofer-Hemsi et al., 2020a) 
also reached high PSNR values with a significantly low number of iterations, which 
means that the training procedure can be improved a lot. Although the SSIM and 
BC are not the best, they are also good. The best traditional method seems to be 
NLMU, although LRTV also yielded similar results. 

In Figure 6.3, performances are reported for zoom factor 3. Here, the perfor-
mance of the multiobjective optimization methods is remarkable, especially in 
terms of PSNR reaching 30dB, and BC, very close to 1. The SSIM of the traditional 
methods has improved, which means that they reconstruct adequately more com-
plex problems (larger-scale factors), although they are still below in the rest of the 
measures. 

Super‐Resolution of 3D MRI                                                                    167 



20 25 30 35
PSNR

Spline

NLMU

LRTV

SRCNN3D

SRCNN3D-i50K-p2

SRCNN3D-i50K-p1.9

SRCNN3D-i50K-WSS

SRCNN3D-i50K-WCS

SRCNN3D+RndS

SRCNN3D+RegSS

0.86 0.88 0.9 0.92 0.94 0.96 0.98
SSIM

Spline

NLMU

LRTV

SRCNN3D

SRCNN3D-i50K-p2

SRCNN3D-i50K-p1.9

SRCNN3D-i50K-WSS

SRCNN3D-i50K-WCS

SRCNN3D+RndS

SRCNN3D+RegSS

0.9 0.92 0.94 0.96 0.98 1
BC

Spline

NLMU

LRTV

SRCNN3D

SRCNN3D-i50K-p2

SRCNN3D-i50K-p1.9

SRCNN3D-i50K-WSS

SRCNN3D-i50K-WCS

SRCNN3D+RndS

SRCNN3D+RegSS

(a)

(b)

(c)

FIGURE 6.2 Comparison of the PSNR, SSIM, BC (higher is better) for the ten methods. 
Mean and standard deviation of the results for all the test images using zoom factor 2.    
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FIGURE 6.3 Comparison of the PSNR, SSIM, BC (higher is better) for the ten methods. 
Mean and standard deviation of the results for all the test images using zoom factor 3.    
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If we carry out a detailed inspection of the types of methods, the comparisons of 
the Lp norm conclude that p = 1.9 yielded better results and the traditional 
Euclidean norm for all cases and reconstruction scales. On the other hand, the 
regular shifting technique (SRCNN3D+RegSS) is slightly better than the random 
version, which might be stretchily related to the brain structures. The combination 
of the shifting method with the Lp norm may produce better results. 

From a qualitative point of view, the outcomes of the compared methods are 
presented in Figures 6.4, 6.5, and 6.6. The outputs of the SRCNN3D-i50K-WSS and 
SRCNN3D-i50K-WCS methods are not available since both methods were trained 
with these images but not tested. First, Figure 6.4 depicts a sectional 3D view of 
the KKI2009-11-MPRAGE T1-weighted image. Restored and residual images are 
presented, as well as the original HR image and the downsampled one. Spline and 
LRTV methods generate blurred super-resoluted images, which can be clearly ob-
served in Figures 6.4 (c) and (d). In order to differentiate better the rest of the out-
comes, the residual images are more appropriate. With them, the NLMU method can 
also be discarded, as well as the L2 norm-based version (SRCNN3D and SRCNN3D- 
i50K-p2). The best restorations are obtained by the image shifting methods. 

Second, Figures 6.5 and 6.6 depict the restored and residual images, respectively, 
for a coronal section of the CIMES image using a zoom factor equal to 3. The main 
difficulty of this case is that the number of voxels to be reconstructed is higher, 
so the differences between the methods are very tiny. In this example, the regular 
shifting does not provide the best outcome, which is yielded by the Lp norm-based 
methods. Concretely, p = 1.9 seems to be the most accurate. Nevertheless, the 
random shifting also worked well, but not the traditional techniques. 

6.6 CONCLUSIONS 

Obtaining HR by LR using single images has been widely considered. On the other 
hand, approaches in SR for multidimensional images show more promising results. 
At present, traditional methods of SR are outperformed by the deep learning-based 
method. SR based on DL shows multiple encouraging taxonomies in last year. DL’s 
pioneering work utilized convolutional networks (SRCNN), and the recent future 
shows improvements with works that vary in some components like GAN’s works. 

Many 2D models were developed in the last years, but 3D models are not plenty 
studied. This chapter reports four recent 3D methodologies that upgrade the current 
state of the art. Globally, there exist two ways to enhance a model: modify the 
model architecture and vary the input images. 

Two robust three-dimensional super-resolution methods for MRIs were pre-
sented based on the use of a p-norm loss layer ( p1 2), at first, and combi-
nations of Lp norm cost functions (p < 2) using the weighted sum and the 
weighted Chebyshev scalarizations, in the second, alternately of the conventional 
Euclidean formulation (p = 2). Qualitatively, restored images look more refined 
and with less structural degradation. Future research with deeper neural networks 
might increase the efficiency with lower values of p. Besides, adding more p-norms 
might improve quality images. Nevertheless, complex optimization problems must 
be solved, which consists of the arduous task of choosing p-norm. 
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On the other hand, two MRI super-resolution methods that merge two meth-
odologies have been presented: restoring a low-resolution image by convolu-
tional neural network processing and quality increasing by random, in the 
first, and regular, in the second, shifting to the input images. The over-smoothing 
was weathered by using different zoom factors. Blooming results were reached 
that overcome other state-of-art methods. Future lines of study incorporate 
the development of additional tuned filtering methods performed on the three- 
dimensional shift space. 

Lp norm and multiobjective optimization generate new DL architectures, and the 
random/regular shifting approach improves DL results. Machine learning could 
draw on the applicability of this method. Other neural networks could include 
these methodologies to improve the quality of the outputs. The line most directly is 
applying other neural networks to improve the image’s quality in widespread tasks 
like noise removal or segmentation. 

The problems of acquiring quality MRI images are widely known, like health 
budget for a specific machine, with high-quality long MRI sessions fewer patients 
are intervened, patients’ claustrophobic fear of spending a long time in the re-
sonance machine, and some more. 

The finding of a methodology that allows improving the quality of an image 
will reduce healthcare costs and interventions duration and, therefore, increase 
the number of patients review daily. It supposes an immediate impact both for 
healthcare, including costs and physicians, and the patient. 
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