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Abstract. In this work, the well-known Graph Partitioning (GP) prob-
lem for undirected weighted graphs has been studied from two points of
view: maximizing (MaxCut) or minimizing (MinCut) the cost of the cut
induced in the graph by the partition. An unified model, based on a neu-
ral technique for optimization problems, has been applied to these two
concrete problems. A detailed description of the model is presented, and
the technique to minimize an energy function, that measures the good-
ness of solutions, is fully described. Some techniques to escape from local
optima are presented as well. It has proved to be a very competitive and
efficient algorithm, in terms of quality of solutions and computational
time, when compared to the state-of-the-art methods. Some simulation
results are presented in this paper, to show the comparative efficiency of
the methods.

1 Introduction

In classical literature, the MinCut (MaxCut) problem is defined as follows: Given
an undirected weighted graph G = (V,E), where V = {vi} is the set of N
vertices and E is the set of ne edges, and edge weights are given by matrix
C = (ci,j)i,j=1,...,N (meaning that the weight or cost of the edge joining nodes i
and j is ci,j ≥ 0), find a minimum (maximum) cut of G, i.e., a partition of V into
two sets that minimizes (maximizes) the total cost of the edges with endpoints
in different sets.

These problems arise in the resolution of many practical or theoretical situ-
ations. Some examples include:
– For MinCut: network reliability theory (if ci,j is the probability of a network

edge to fail, the minimum cut ensures the minimum risk of network discon-
nection) [17, ?], design of compilers (communication costs must be minimized
in order to reduce the swap with memory) [4, 8].

– For MaxCut: pattern recognition, clustering, statistical physics and the de-
sign of communication networks, VLSI circuits and circuit layout [2].

So, these problems are well-known in literature. Due to their wide applicabil-
ity, many variants of these problems have been formulated, placing restrictions
on the original formulation.
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The original problems, with all the variants, are known to be NP-complete
[6], making their resolution computationally intractable, but in the case of planar
graphs they belong to P , that is, there exists a solution in polynomial time. So,
many algorithms have appeared to tackle GP problems in the general case.

Originally, MinCut was believed to be a variant of the s-t minimum cut
problem, which adds the restriction of being s and t in different sets of the
partition. In the early 60’s, Gomory and Hu showed that a minimum cut in G
can be estimated with N −1 s-t minimum cut computations, see [7]. So, most of
the algorithms to solve MinCut are based in the max-flow/min-cut theorem [5],
which implies that a s-t max-flow solution induces a s-t min-cut solution. The
efforts were then focused, for a long time, in solving max-flow problems.

In 1989, Nagamochi and Ibaraki [16] presented an algorithm that did not
make use of max-flow computations. In 1993 and later in 1996, Karger et al.
[9, 10] presented a class of randomized algorithms, based on the notion of edge
contraction, that can find all minimum cuts with probability 1 − 1

N .
In the recent years, METIS [11] has become one of the most powerful al-

gorithms for this problem, achieving the best results when compared to other
methods, and in a very low computational time, as proved by [20]. To our knowl-
edge, no neural algorithm has been presented to tackle MinCut.

In 1997, Alberti et al. presented a type-Hopfield neural model for MaxCut [1],
but its performance is worse than the presented by Bertoni et al [3]. Takefuyi
and his colleagues [18] developed a powerful neural model named ‘maximum’
and it proved to perform better than the rest of algorithms in solving a wide
range of combinatorial optimization problems. Recently, Galán-Maŕın et al. pro-
posed a new neural model named OCHOM which obtains much more efficient
solutions than ‘maximum’. Moreover, it can be used for many problems and it
also has the advantage of fast convergence to a valid solution without tuning
any parameter. In order to make OCHOM escape from local minima, Wang et
al.[19] have recently proposed a stochastic dynamics for OCHOM, permitting
temporary decreases of the objective function.

In this work, we want to present a neural model, based on a recurrent network,
that has been proved to get very good results in some combinatorial optimization
problems, see for example [12, 13, 14, 15], allowing K-partitioning of a graph.

Note that there exists very few bibliographic references for K-partitioning
(most of the references is focused in bipartition). For MinCut, only METIS and
the algorithm proposed in [8] consider that possibility, no one for MaxCut.

In the next section, we will give a detailed description of GP problem , and
the two variants studied in this work, MinCut and MaxCut.

2 Formal Description of the Problem

Let G = (V,E) be an undirected graph without self-connections. V = {vi} is
the set of vertices and E is the set of ne vertices. For each edge in E there is a
weight ci,j ∈ R

+. All weights can be expressed by a symmetric real matrix C,
with ci,j = 0 when it does not exist an arc with endpoints vi and vj .
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The Minimum Cut Problem (MinCut): consists in finding a partition
of V into two subsets A1 and A2, such that

∑
vi∈A1,vj∈A2,i>j ci,j is minimum.

Generalization of the MinCut Problem (K-MinCut): It looks for a
partition of V into K disjoint sets Ai such that the sum of the weights of the
edges from E that have their endpoints in different elements of the partition is
minimum. So, the function to be minimized is

∑

vi∈Am,vj∈An,i>j

ci,j (1)

With this formulation, the trivial solution is A1 = V , Ai = ∅ for i = 2, . . . ,K.
So, some constraints have to be made in order to make this problem more in-
teresting. In this work, we have considered a restriction to the cardinality of the
subsets Ai: the number of nodes in each group Ai is constrained to be Ni, such
that

∑K
i=1 Ni = N .

MaxCut and K-MaxCut are defined in a similar way: find a partition (K-
partition) of V such that the cost given by the expression in (1) is maximum.
Contrary to K-MinCut, there are no need for constraints in the definition of
K-MaxCut.

3 The Neural Model

In order to solve the GP problem, we have used the MREM neural model since
this model has been successfully used for other combinatorial optimization prob-
lems [12, 13, 14, 15].

The MREM neural model: It consists in a series of multivalued neurons,
where the state of i-th neuron is characterized by its output (si) that can take
any value in any finite set M. This set can be a non numerical one, but, in this
paper, the neuron outputs only take value in M ⊂ Z

+.
The state vector S = (s1, s2, . . . , sN ) ∈ MN describes the network state at

any time, where N is the number of neurons in the net. Associated with any
state vector, there is an energy function E : MN → R, defined by the expression:

E(S) =
1
2

N∑

i=1

N∑

j=1

wi,jf(si, sj) (2)

where W = (wi,j) is a matrix, f : M×M → R is usually a similarity function
since it measures the similarity between the outputs of neurons i and j. At each
step, the state vector will be evolving to decrease the energy function.

To solve the GP problem with this neural net, we need as many neurons
as number of nodes N in the graph. Each neuron taking value si ∈ M =
{1, 2, . . . ,K} points to the subset of the partition where the i-th node is as-
signed to.

The cost function of the K-MinCut and K-MaxCut problems, given by (1),
must be identified with the energy function of (2). So, for the general GP, wi,j =
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ci,j , and f(x, y) = 1 − δx,y (Krönecker delta function) for the K-MinCut and
f(x, y) = δx,y for the K-MaxCut, since it is equivalent to maximize the cost
of the edges cut by the partition and to minimize the cost of the edges whose
endpoints lie within the same group of the partition.

Initially, the state of the net is randomly selected from a subset F ⊂ MN .
At any time, the net is looking for a better solution than the current one, in
terms of minimizing the energy function. To this end, multiple dynamics can be
defined for the net, and we will discuss them in the next section.

4 Neural Implementation for GP Problem

In this work, a simple dynamics, named best-2, has been firstly implemented,
and then it has been combined with two methods to improve solutions: best-3
and the shake phase.

best-2: It consists in getting the greatest decrease of the energy function just
by changing the state of only two neurons at each time. So, a set of neighboring
states must be defined. If neurons to be changed are p and q, this set will be
named Np,q. Then, if S(t) is the state of the net at time t, S(t + 1) will be the
vector from a Np,q that maximizes the decrease of energy, −∆E.

An expression for the decrease of energy is here given in order to reduce the
computational cost of the model. Suppose that neurons p and q are going to be
changed, and that we denote si(t) = si and si(t + 1) = s′i for all i. Then, the
decrease of energy is given by:

Up,q = −∆E =
1
2

N∑

i=1

N∑

j=1

wi,j

(
f(si, sj) − f(s′i, s

′
j)

)
=

N∑

i=1

(∆i,p + ∆i,q) − ∆p,q

(3)

(provided the symmetry of function f), where ∆i,j = wi,j

(
f(si, sj) − f(s′i, s

′
j)

)
.

So, the dynamics best-2 can be summarized as follows:

1. A state for the net is initially randomly assigned.
2. Repeat until no change in state vector:

(a) The scheduling selects a value d ∈ {1, . . . , �N
2 �}. For d > �N

2 �, all of the
following computations are made twice, and this way we can save some
computational effort.

(b) The following can be made parallel: every neuron p studies all possibili-
ties of changing neurons p and q = (p + d) mod (N), with 0 < q ≤ N ,
i.e., p computes the potential associated to the possible changes, it is
stored as a vector up whose components are the decrease of energy as-
sociated to any vector in Np,q, by applying (3).

(c) Neuron p computes α(p) = max up, associated to a state S̃p,q ∈ Np,q.
(d) The scheduling selects the next state of the net, S(t + 1) = S̃p,q for

which p = arg max α.
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In order to achieve better solutions, a pair of techniques has been developed.
best-3: It is an extension of best-2, allowing changes of three neurons out-

puts. In this case, if the neurons to be changed are p, q and r, a neighborhood
Np,q,r must be defined, and the associate expression for the decrease of the en-
ergy is: Up,q,r = Up,q +

∑N
i=1 ∆i,r − (∆p,r + ∆q,r). And the dynamics of best-3

can be easily derived from best-2.
So, the scheme of the complete process is as follows: iterate best-2 until

achieving a solution, then iterate best-3 once. If the solution has been improved,
start with best-2 again and repeat the process.

Shake phase: Given an estimated solution, a good solution for MaxCut
(MinCut) usually has the following property: “High(Low)-weighted arcs must
have their endpoints in different subsets”.

So, we can study the high(low)-weighted arcs. Let A be the set of arcs with
weights greater (lower) than a threshold and endpoints in the same group. Let
V ∗ ⊂ V be the set of endpoints of arcs in A. Then the current solution is saved
and the shake phase begins. It consists in:

– Selecting the nodes that are endpoints of arcs in A and their neighbors:
H = {vi/∃vj ∈ V ∗, ei,j = 1}.

– Nodes in V − H are clamped to their current values, while nodes in H are
randomly assigned.

– With this new initial state vector, the network evolves with the usual dy-
namics (best-2), but only nodes in H will be selected in order to be modified,
until a new stable state is reached.

– This new solution is compared with the previous saved one and the best one
is selected.

Although the shake method can be used to improve the solutions of both
K-MaxCut and K-MinCut, in this work it has been tested for K-MaxCut, as
an example.

So, we must concrete the definitions of F and the neighbors Np,q and Np,q,r

for each problem (K-MinCut and K-MaxCut):

– For K-MinCut:
1. F = {S ∈ MN : exactly Ni of its components are equal to i,∀i =

1, . . . ,K} is the set of feasible solutions for this problem. Therefore,
the net must begin in a feasible state and must be kept inside F in any
time.

2. best-2: The only alternative for changing the states of neurons p and
q, and to remain in F is swapping their outputs. So, if S is the current
state vector of the net, we have Np,q = {S,S}, where S(p) = S(q),
S(q) = S(p), and S(m) = S(m) for all m �∈ {p, q}. Note that in this
case, we have ∆p,q = wp,q (f(sp, sq) − f(sq, sp)) = 0.
best-3: Something similar occurs when dealing with Np,q,r: only some
permutations of the outputs of neurons p, q and r are allowed because
many of them are included in some Np,q. This gives Np,q,r = {S,S1,S2},
where S(m) = S1(m) = S2(m) for m �∈ {p, q, r}, and S1(r) = S2(q) =
S(p), S1(p) = S2(r) = S(q) and S1(q) = S2(p) = S(r).
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– For K-MaxCut:
1. Now, F = MN , there are no restrictions in this case, so any state is

feasible.
2. The neighboring states are now defined as in the most general case: if

current state is S, Np,q and Np,q,r include all possible states from MN

that differ from S only in the outputs of neurons p or q (or both), and
p, q or r, respectively. There are K2 vectors in Np,q, and K3 in Np,q,r.

Some experimental results for the dynamics herein proposed are shown in the
next section.

5 Simulation Results

In this work, we have tested our algorithms with the two problems exposed in
the text.

A test set was formed by 240 random graphs depending on two param-
eters, N ∈ {20, 50, 80, 100} (the cardinality of the set of vertices), and ρ ∈
{0.05, 0.15, 0.25} (the density of edges in the graph, meaning that ne ≈ ρN(N−1)

2 ).
Weights for edges were integers randomly chosen in [0, 5]. For this set to be com-
plete, the values for the parameters were chosen to cover a wide range of graphs.

For K-MinCut, we have compared our model with METIS [11], every algo-
rithm implemented in MatLab on a Pentium IV (3.06 Ghz). In Table 1, column
labelled BEST-2 shows the results of applying only the dynamics best-2, and
the column labelled BEST-3, presents the results of applying the composition of
best-2 and best-3, as exposed in Sec. 4.

It can be verified that our model outperforms METIS in many cases. Note
that METIS is a heuristic that always produces the same solution, while the
repetitive use of best-2, best-3 always obtains good solutions that can be im-
proved with new executions.

Table 1. Best and average performance on test set over 10 runs

BEST-2 BEST-3 METIS
N ρ Best Av. t Best Av. t Best/Av. t

20 0.05 0 0.405 0.0006 0 0.395 0.0111 0 0.016
20 0.15 6.3 8.945 0.0007 6.05 8.21 0.012 7.15 0.0005
20 0.25 18.2 21.75 0.0007 17.75 19.965 0.0132 19.4 0.0005

50 0.05 9.35 14.145 0.0021 8.9 13.98 0.0928 9 0.0005
50 0.15 86.1 95.64 0.0019 81.75 91.435 0.1283 90.8 0
50 0.25 180.25 194.025 0.0023 174.5 186.38 0.1428 187.75 0.002

80 0.05 42.5 51.665 0.0032 40.8 50.35 0.2974 47.95 0.0005
80 0.15 269.95 286.61 0.0039 263.2 279.24 0.3998 283.05 0.0015
80 0.25 535.7 556.09 0.003 526.2 544.54 0.4663 551.6 0.0035

100 0.05 82.8 95.66 0.0046 80.3 93.725 0.5178 86.55 0
100 0.15 452.1 472.58 0.0046 440.95 461.68 0.7451 472.6 0.003
100 0.25 869.5 898.165 0.0047 856.75 883.09 0.8182 902.5 0.004
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Table 2. Best and average performance on test set

Wang OCHOM MREM MREM-shake
N ρ Best Av. t Best Av. t Best Av. t Best Av. t

20 0.05 26 21.8 0.003 26 24.4 0.001 26 25.4 0.024 26 25.4 0.023
20 0.15 67 29.0 0.002 69 66.5 0.001 69 68.0 0.027 69 68.0 0.027
20 0.25 80 63.6 0.002 86 78.5 0.001 86 84.4 0.024 86 84.4 0.025

50 0.05 144 113.4 0.016 142 137.4 0.005 149 143.5 0.243 149 143.5 0.265
50 0.15 278 248.8 0.015 273 264.6 0.005 284 276.7 0.234 284 277.0 0.369
50 0.25 460 397.9 0.012 476 448.8 0.006 469 460.6 0.244 472 463.9 0.482

80 0.05 270 238.0 0.031 266 258.6 0.011 279 271.5 0.713 279 271.5 1.025
80 0.15 715 702.5 0.034 739 712.4 0.014 754 735.3 0.943 754 742.2 1.954
80 0.25 1100 878.2 0.034 1106 1080.5 0.016 1117 1091.0 0.857 1117 1095.1 1.717

100 0.05 400 323.7 0.048 407 390.2 0.017 418 406.0 1.539 418 406.6 2.374
100 0.15 1071 843.6 0.068 1060 1029.1 0.023 1081 1062.3 1.629 1084 1068.5 3.257
100 0.25 1697 834.4 0.043 1728 1682.3 0.025 1741 1702.7 1.323 1741 1714.8 2.407

With respect to K-MaxCut simulations, we have compared our proposed
algorithms to OCHOM and Wang’s. All of them have been implemented and
tested in MATLAB, on the same conditions as above. More specifically, Wang’s
network has been tested with its default parameter λ = 30. In the proposed
model, the set A was built by including every edge ei,j whose cost ci,j > c + 3σ,
where c, σ are respectively the mean and the standard deviation of ci,j . So, A
is forced to include exclusively high-weighted edges.

Both best and average solutions obtained are shown in Table 2. So, we can
verify that the proposed algorithm outperforms others, not only giving the best
results, but even on average.

6 Conclusions

The aim of this work has been to present a neural model for the resolution of
combinatorial optimization problems. In particular, it has been proved to be a
good optimizer for some NP-complete problems, as seen in [12, 13, 14, 15].

Contrary to heuristics, producing always the same solution to the problem,
with the neural approach developed in this work, improvement of solutions is
feasible, because the initial state of the net can be changed in each execution,
and the search for the optimum begins from a different point in the search space,
avoiding some local optima.

Another important feature that is present in the model is that it allows the K-
partitioning of graphs, while some other techniques are based in the bipartition.
So, this model is applicable to more general situations than some other methods.

Two important techniques to escape for local optima have been exposed
in this paper. When combined to the original dynamics, best-2, they improve
substantially the quality of the achieved solution.

To end with, the parallelism included in the computation dynamics is a pow-
erful tool to achieve very good results with very little time consumption.
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Graph MaxCut Problem, in Proceedings of International Conference of Computa-
tional Methods in Science and Engineering, ICCMSE, 1 (2004), 375-378.

16. H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and
Capacitated Graphs. SIAM J. Disc. Meth., 5 (1992), 54-66.

17. A. Ramanathan and C. Colbourn. Counting Almost Minimum Cutsets with Reli-
ability Applications. Math. Prog., 39 (1987) 253-261.

18. Y. Takefuyi and J. Wang, Neural computing for optimization and combinatorics.
Singapore, World Scientific, 3, (1996).

19. Jiahai Wang and Zheng Tang. An improved optimal competitive Hopfield network
for bipartite subgraph problems. Neurocomputing (In press).

20. D.Yang, Y. Chung, C. Chen and C. Liao. A Dynamic Diffusion Optimization
Method for Irregular Finite Element Graph Partitioning, The Journal of Super-
computing, Kluwer Academic Publishers, 17, (2000), 91-110.


	Introduction
	Formal Description of the Problem
	The Neural Model
	Neural Implementation for GP Problem
	Simulation Results
	Conclusions
	References



