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Abstract. In this paper, two important issues concerning pattern recog-
nition by neural networks are studied: a new model of hebbian learning,
as well as the effect of the network capacity when retrieving patterns and
performing clustering tasks. Particularly, an explanation of the energy
function when the capacity is exceeded: the limitation in pattern storage
implies that similar patterns are going to be identified by the network,
therefore forming different clusters.

This ability can be translated as an unsupervised learning of pat-
tern clusters, with one major advantage over most clustering algorithms:
the number of data classes is automatically learned, as confirmed by
the experiments. Two methods to reinforce learning are proposed to im-
prove the quality of the clustering, by enhancing the learning of patterns
relationships.

As a related issue, a study on the net capacity, depending on the num-
ber of neurons and possible outputs, is presented, and some interesting
conclusions are commented.

1 Introduction

In 1949, Hebb [2], introduced a physiological learning method based on the
reinforcement of the interconnection strength between neurons. It was explained
in the following terms:

When an axon of cell A is near enough to excite a cell B and re-
peatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.

This kind of learning method has been widely applied to recurrent networks in
order to store and retrieve patterns in terms of their similarity. Models that used
this learning rule were the bipolar model (BH) presented by J. J. Hopfield in
1982 [4], representing a powerful neural model for content addressable memory,
or its analog version [5], among others. These networks, although successful in
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solving many combinatorial optimization problems, present two main problems
when used as content-addressable memory: their low capacity and the apparition
of spurious patterns.

The capacity parameter α is usually defined as the quotient between the
maximum number of patterns to load into the network and the number of used
neurons that obtains an acceptable error probability (usually perror = 0.05 or
0.01). It has been shown that this constant is approximately α = 0.15 for BH.

This value means that, in order to load K patterns, more than K
α neurons

will be needed to achieve an error probability equal to perror. Or equivalently, if
the net is formed by N neurons, the maximum number of patterns that can be
loaded in the net (with that error constraint) is K < αN .

Recently, in [8], a multivalued recurrent network is used to avoid the undesir-
able apparition of spurious patterns by using the so-called augmented patterns
(the method presented in that work is also valid for BH). Patterns are correctly
retrieved if sufficiently separated.

The main idea of this work holds that when patterns are very close each
other, or if the net capacity is exceeded, then local minima corresponding to
similar patterns tend to be combined, forming one unique local minimum. So,
although considered as a limitation of the net as associative memory, this fact
can explain the way in which the human brain form concepts: several patterns,
all of them similar to a common typical representative, are associated (as in
the vector quantization), and form a group in which particular features are not
distinguishable.

Obviously, enough samples are needed to generalize and not to distinguish
their particular features. If there exist few samples from some class, they will
still be retrieved by the net individually, that is, as an associative memory.

2 MREM Model with Semi-parallel Dynamics

Let H be a recurrent neural network formed by N neurons, where the state of
each neuron i is defined by its output Vi, i ∈ I = {1, 2, . . . , N} taking values in
any finite set M = {m1, m2, . . . , mL}. This set does not need to be numerical.

The state of the network, at time t, is given by a N -dimensional vector,
V (t) = (V1(t), V2(t), . . . , VN (t)) ∈ MN . Associated to every state vector, an
energy function, characterizing the behavior of the net, is defined:

E(V ) = −1
2

∑

i∈I

∑

j∈I
wijf(Vi, Vj) +

∑

i∈I
θi(Vi) (1)

where wi,j is the weight of the connection from the j-th neuron to the i-th
neuron, f : M × M → R can be considered as a measure of similarity between
the outputs of two neurons, usually verifying the similarity conditions mentioned
in [8,10]:
1. For all x ∈ M, f(x, x) = c ∈ R.
2. f is a symmetric function: for every x, y ∈ M, f(x, y) = f(y, x).
3. If x %= y, then f(x, y) ≤ c.
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and θi : M → R are the threshold functions. Since thresholds will not be used for
content addressable memory, henceforth we will consider θi be the zero function
for all i ∈ I.

The introduction of this similarity function provides, to the network, of a
wide range of possibilities to represent different problems [6,7,8,9,10,11]. So, it
leads to a better representation than other multivalued models, as SOAR and
MAREN [1,12], since in those models most of the information enclosed in the
multivalued representation is lost by the use of the signum function that only
produces values in {−1, 0, 1}.

In every instant, the net evolves to reach a state of lower energy than the
current one.

In this work, we have considered discrete time and semi-parallel dynamics,
where only one neuron is updated at time t. The next state of the net will be
the one that achieves the greatest descent of the energy function by changing
only one neuron output.

Let us consider a total order in M. The potential increment when a-th neuron
changes its output from Va to l ∈ M at time t, is Ua,l(t) = −∆E:

Ua,l(t) =
1
2

∑

i∈I
[wa,if(l, Vi(t)) + wi,af(Vi(t), l) − (wa,if(Va(t), Vi(t))+

+wi,af(Vi(t), Va(t)))] − 1
2
waa[f(l, l) − f(Va(t), Va(t))] (2)

If f verifies the similarity conditions, then the reduced potential increment is
obtained:

U∗
a,l(t) = −1

2

∑

i∈I
[(wa,i + wi,a) · (f(Vi(t), l) − f(Vi(t), Va(t)))] (3)

We use the following updating rule for the neuron outputs:

Va(t + 1) =
{

l, if Ua,l(t) ≥ Ub,k(t)∀k ∈ M and ∀b ∈ I
Va(t), otherwise (4)

This means that each neuron computes in parallel the value of a L-dimensional
vector of potentials, related to the energy decrement produced if the neuron state
is changed. The only neuron changing its current state is the one producing the
maximum decrease of energy.

It has been proved that the MREM model with this dynamics always con-
verges to a minimal state [7]. This result is particularly important when dealing
with combinatorial optimization problems, where the application of MREM has
been very fruitful [6,7,8,9,10,11].

3 MREM as Auto-Associative Memory

Now, let X = {Xk : k ∈ K} be a set of patterns to be loaded into the neural
network. Then, in order to store a pattern, X = (xi)i=1,2,...,N , components of
the W matrix must be modified in order to make X the state of the network
with minimal energy.
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As pointed out in [8,10], since energy function is defined as in Eq. (1), we
calculate ∂E

∂wij
= − 1

2f(Vi, Vj) and we modify the components of matrix W in
order to reduce the energy of state V = X by the rule ∆wi,j = −α ∂E

∂wi,j
=

α
2 f(xi, xj) for some α > 0.

Particularly, for α = 2 (every α > 0 produces functionally equivalent net-
works, see [8,10]), it results:

∆wi,j = f(xi, xj) (5)

and considering that, at first, W = 0, that is, all the states of the network
have the same energy and adding over all the patterns, the next expression is
obtained:

wi,j =
∑

k∈K
f(xki, xkj) (6)

Equation (6) is a generalization of Hebb’s postulate of learning, because the
weight wij between neurons is increased in correspondence with their similarity.

It must be pointed out that, when bipolar neurons and the product function
are used, f(x, y) = xy, the well-known learning rule of patterns in the Hopfield’s
network is obtained.

In order to recover a loaded pattern, the network is initialized with the known
part of that pattern. The network dynamics will converge to a stable state (due
to the decreasing of the energy function), that is, a minimum of the energy
function, and it will be the answer of the network. Usually this stable state is
next to the initial one.

But, as explained in [8,10] in terms of similarity between vectors associated
to different states, when the bipolar Hopfield network loads the pattern X, by
Eq. (5) with f(Vi, Vj) = ViVj , the energy of other states is also reduced and
the opposite state is also loaded. States with local minimum energy and no
associated with input patterns are called spurious states and loading spurious
states is usually considered an undesirable effect.

4 Spurious Patterns

In [8,10], a technique to avoid the apparition of spurious states when loading
pattern X = (xi) in BH is presented.

Definition 1. Given a state V of the net, and a similarity function f , its as-
sociated matrix (GV ) is defined as a N × N matrix whose elements are Gi,j =
f(Vi, Vj).

In addition, it can be defined its associated vector (GV ) as the vector with
N2 components obtained by expanding matrix GV = (Gi,j) into vector form,
GV = (Gk), verifying Gj+N(i−1) = Gi,j.

Definition 2. Suppose that X = (x1, x2, . . . , xN ) is a pattern to be loaded in the
net, and M = {m1, m2, . . . , mL}. The augmented pattern associated to X
is the vector X̂ = (x1, x2, . . . , xN , m1, m2, . . . , mL) ∈ MN+L whose components
are x̂i = xi if i ≤ N and x̂i = mi−N if i > N .
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It must be pointed out that, in order to load augmented patterns into the net, only
N neurons are necessary, since last L components are clamped to a fixed value. It
is only necessary to consider the weights wi,j associated to these components.

Theorem 1. The function Ψ : X̂ → GX̂ , that associates every augmented
pattern to its associated vector, is injective.

Proof. Please refer to [8].

So, instead of loading a pattern X with xi ∈ M = {m1, m2, . . . , mL}, its associ-
ated augmented pattern X̂ can be loaded into the net. The state X̂ will be the
only one maximizing the energy decrease, since the term WX̂ = (f(x̂i, x̂j))i,j is
added to the previously computed weight matrix W , as indicated by Eq. (6).

5 Some Remarks on the Capacity of the Net

In [8], Mérida et al. find an expression for the capacity parameter α for MREM
model in terms of the number of neurons N and the number of possible states
for each neuron, L, for the case in which N is big enough to apply the Limit
Central Theorem (N ≥ 30):

α(N, L) ≈ 1
N

+

(
A2

zα
2 − B

)

NC
(7)

where A = N +3+ (N−1)(4−L)
L , B = 8(N−1)(L−2)

L2 , C = 8N
L and zα is obtained by

imposing the condition that the maximum allowed error probability in retrieving
patterns is perror. For perror = 0.01, we get zα ≈ 2.326.

Some facts can be extracted from the above expression.

For a fixed number of neurons, capacity is not bounded above: Suppose
N fixed. Equation (7) can be rewritten in the following form:

α(N, L) ≈ 1
N2z2

α

[
2L + 4(N − 1) + z2

α +
2(N − 1)(N − 1 + z2

α)
L

]

If we make L tend to ∞, we get limL→∞ α(N, L) = ∞, since the coefficient
of L in this expression is positive.

What actually happens is that α(N, ·), as a function of L, has a minimum
at the point L0(N) =

√
(N − 1)(N − 1 + z2

α) ≈ N + 1 for zα = 2.326. It is a
decreasing function for L < L0(N) and increasing for L ≥ L0(N).

One consequence of this result is that, for appropriate choice of N and L, the
capacity of the net can be α(N, L) > 1.

This fact can be interpreted as a adequate representation of the multivalued
information, because, to represent the same patterns as MREM with N and L
fixed, BH needs NL binary neurons and therefore the maximum number of stored
patterns may be greater than N . So it is not a strange thing that the capacity
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Fig. 1. Representation of the capacity α of the network versus the number of possible
states of the neurons, L, for different values of N , the number of neurons

can reach values greater than 1, if the patterns are multivalued, MREM needs
much less neurons to represent the pattern than BH.

For a fixed number of possible outputs, capacity is bounded below
by a positive constant: Suppose L is fixed. Equation (7) can be rewritten as
follows:

α(N, L) ≈ 1
z2

αL

[
2 +

4(L − 1) + 2z2
α

N
+

2(L − 1)2 + (L − 2)z2
α

N2

]

It can be easily seen that this expression represents a function whose value
decreases as N grows. So, a net with more neurons than other, and the same
possible states, will present less capacity than the second one. Thus, a mini-
mum positive capacity can be computed for each possible value of L, verifying
αmin(L) = limN→∞ α(N, L) = 2

z2
αL > 0.

αmin(L) coincides with the asymptotic capacity for the net with L possible neu-
ron outputs. For example, if L = 2 (as in BH), an asymptotic capacity of αmin(2) =
0.1847 is obtained, exactly the capacity for BH provided in other works [3].

All these facts can be observed in Fig. 1, representing the value of the param-
eter α(N, L) for N ∈ {30, 40, 80, 100} and L ∈ {2, 3, . . . , 200}.

6 When Capacity is Exceeded

This work tries to explain what may happen psychologically in the human brain.
When a reduced number of patterns has to be memorized, the brain is able to
remember all of them when necessary. Similarly, when the capacity of the net
is not exceeded, the net is able to retrieve exactly the same patterns that were
loaded into it. But when the brain receives a great amount of data to be recognized
or classified, it distinguishes between some groups of data (in an unsupervised
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way). This kind of behavior is also simulated by neural networks, as we will show
next, proving the power (and adequation) of the model herein presented.

Then, learning rules as Hebb’s (or the more general given by Eq. (5)), where
connection between neurons is reinforced by the similarity of their expected
outputs, may produce classifiers that discover some knowledge from the input
patterns, like the actual number of groups in which the data is divided. Then, an
unsupervised clustering of the input pattern space is automatically performed.

If a pattern, say X, is to be loaded in the net, by applying Eq. (5), a local
minimum of the energy function E is created at V = X. If another pattern X′

is apart from X, its load will create another local minimum. But, if X and X′

are close each other, these two local minima created by the learning rule will be
merged, forming one local minima instead.

Then, if a group of patterns is loaded into the net (overflowing its capacity),
and all of them are close each other, only one local minimum will be formed,
and at the moment of retrieving these data, the unique pattern to be retrieved
will be associated to the state of minimum energy. So, patterns can be classified
by the stable state of the net which they converge to.

This technique has also the advantage of time. Its execution time only depends
on the number of patterns, and it is totally independent of the number of classes
in which the data is divided into.

7 Learning Reinforcement

Equation (5) for the learning rule, generalization of Hebb’s one, shows that the
only thing taking part in updating weight matrix is the pattern to be loaded into
the net at that time. So, it represents a very ‘local’ information, and does not take
account of the possible relationships that pattern could have with the already
stored ones. So, it is convenient to introduce an additional mechanism in the
learning phase, such that the information concerning to relationships between
patterns is incorporated in the update of the weight matrix. In what follows, we
will consider that the similarity function is f(x, y) = 2δx,y − 1, that is, its value
is 1 if x = y and −1 otherwise.

Learning Reinforcement Method: Suppose that we have the (augmented)
pattern X1 stored in the net. So, we have the weight matrix W = (wi,j). If
pattern X2 is to be loaded into the network, by applying Eq. (5), components
of matrix ∆W are obtained.

If wi,j and ∆Wi,j have positive signum (both values equal 1), it means that
X1i = X1j and X2i = X2j , indicating the relationship between X1i, X1j , X2i

and X2j . If both are negative valued, something similar happens, but with in-
equalities instead of equalities.

So, the fact of wi,j and ∆Wi,j having the same signum is a clue of a rela-
tionship that is repeated between components i and j of patterns X1 and X2.
In order to reinforce the learning of this relationship, we propose a novel tech-
nique, presenting also another kind of desirable behavior: The model proposed
before, given by Eq. (6), is totally independent of the order in which patterns
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are presented to the net. This fact does not actually happen in the human brain,
since every new information is analyzed and compared to data and concepts
previously learned and stored.

So, to simulate this kind of learning, a method named LR is presented:
Let us multiply by a constant, β > 1, the components of matrices W and

∆W where the equality of signum is verified, i.e., the components verifying
wi,j · ∆Wi,j > 0. Hence the weight matrix learned by the network is, after
loading pattern X2:

w′
i,j =

{
wi,j + ∆Wi,j if wi,j · ∆Wi,j < 0
β[wi,j + ∆Wi,j ] if wi,j · ∆Wi,j > 0 (8)

Similarly, if there are some patterns {X1, X2, . . . ,XR} already stored in the
network, in terms of matrix W , and pattern XR+1 is to be loaded, matrix ∆W
(corresponding to XR+1) is computed and then the new learning rule given by
Eq. (8) is applied.

It must be noted that this method satisfy Hebb’s postulate of learning quoted
in Sec. 1.

This learning reinforcement technique, LR, has the advantage that it is also
possible to learn patterns one by one or by blocks, by analyzing at a time a
whole set of patterns, and comparing the resulting ∆W to the already stored in
the net. Then, for instance, if {X1, . . . ,XR} has already been loaded into the
net in terms of matrix W , we can load a whole set {Y 1, . . . ,Y M} by computing
∆W = (

∑M
k=1 f(yki, ykj))i,j and then applying Eq. (8).

Iterative Learning Reinforcement Method: LR can be improved in many
ways. In this section, an iterative approach, ILR, to enhance the solution given
by LR is presented.

Suppose that, by using Eq. (8) of LR, matrix WX related to pattern set
X = {Xk : k ∈ K} has been learned and denote by ϕWX (Xk) the stable state
reached by the network (with weight matrix WX) when beginning from the initial
state given by V = Xk.

Then, the cardinal of {ϕWX (Xk) : k ∈ K} is (no multiplicities) the number
of classes that LR finds, na.

ϕWX (X) := {ϕWX (Xk) : k ∈ K} can be considered (with all multiplicities
included) as a new pattern set, formed by a noiseless version of patterns in X .
So, if applying a second time LR to ϕWX (X), by using Eq. (8) to build a new
matrix WϕWX (X), better results are expected than in the first iteration, since
the algorithm is working with a more refined pattern set.

This whole process can be repeated iteratively until a given stop criterion is
satisfied. For example, when two consecutive classifications assign each pattern
to the same cluster.

8 Simulations

In order to show the ability of LR and ILR to perform a clustering task as
mentioned in Sec. 6, several simulations have been made whose purpose is the
clustering of discrete data.
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Table 1. Average clustering results on 10 runs of these algorithms, where na indicates
the number of obtained clusters, pcc is the correct classification percentage (that is, the
percentage of simulations in which na = n) and Err. is the average error percentage

n = 3 n = 4 n = 5
LR ILR LR ILR LR ILR

K na pcc Err. na pcc Err. na pcc Err. na pcc Err. na pcc Err. na pcc Err.
75 3.1 90 0.53 3.1 90 0.53 4.7 60 3.46 4.1 90 0.26 6.0 40 7.33 5.2 80 2.00
150 3.3 70 0.33 3.1 90 0.13 4.8 70 1.06 4.4 80 0.73 7.5 20 4.00 6.2 30 2.80
300 3.7 70 0.60 3.3 80 0.43 5.5 30 3.06 4.6 60 4.80 7.7 0 3.16 5.8 50 0.50
450 3.5 70 0.37 3.1 90 0.17 4.9 60 0.55 4.4 80 0.31 7.2 10 4.93 6.0 40 4.44
600 3.2 80 0.25 3.2 80 0.25 5.4 50 0.61 4.6 50 0.31 8.4 30 3.03 7.0 50 2.88
750 3.3 80 0.06 3.0 100 0.00 5.4 30 3.49 4.6 60 3.12 10.6 10 9.88 8.1 10 5.56
900 3.2 90 3.23 3.0 100 0.00 5.5 20 0.56 4.8 40 0.42 8.3 10 3.30 6.3 40 2.76
Av. 3.3 78 0.76 3.1 90 0.21 5.2 46 1.82 4.5 66 1.42 7.9 17 5.09 6.3 43 2.99

Several datasets have been created, each of them formed by K 50-dimensional
patterns randomly generated around n centroids, whose components were inte-
gers in the interval [1, 10]. That is, the n centroids were first generated and
input patterns were formed from them by introducing some random noise mod-
ifying one component of the centroid with probability 0.018. So, the Hamming
distance between input patterns and the corresponding centroids is a binomial
distribution B(50, 0.018). Patterns are equally distributed among the n clus-
ters. It must be noted that patterns may have Hamming distance even 5 or 6
from their respective centroid, and new clusters can be formed by this kind of
patterns.

So, a network with N = 50 neurons taking value in the set M = {1, . . . , 10}
has been considered. The parameter of learning reinforcement has been chosen
β = 1.5. It has been observed that similar results are obtained for a wide range
of values of β.

The results obtained in our experiments are shown in Table 1. It can be
observed not only the low classification error (from 0% to 9.88% on average), but
in addition these new techniques get the exact, or very approximate, number of
groups in which the pattern set is actually divided in almost every simulation. In
fact, whenever the number na of discovered clusters equals n, an error percentage
of 0% is obtained, retrieving in those cases the initial centroids. It can also be
verified that ILR clearly outperforms LR in most cases, getting a more accurate
classification and improving the estimation of the number of clusters, as seen in
the last row of the table.

9 Conclusions

In this work, we have explained that the limitation in capacity of storing patterns
in a recurrent network has not to be considered as determinant, but it can be
used for the unsupervised classification of discrete patterns.
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The neural model MREM, based on multivalued neurons, has been developed,
as a generalization of the discrete Hopfield model and as an auto-associative
memory, improving some of the undesirable aspects of the original Hopfield
model: some methods and results for the net not to store spurious patterns
in the learning phase have been shown, reducing so the number of local minima
of the energy function not associated to an input pattern.

By applying a slight modification to Hebb’s learning rule, a mechanism to
reinforce the learning of the relationships between different patterns has been in-
troduced to the first part of the process, incorporating knowledge corresponding
to several patterns simultaneously. This mechanism can be repeated iteratively
to enhance the relationship learning procedure.

In addition, simulations confirm the idea expressed in this work, getting op-
timal results of classification in many cases.

This work presents a new open research line, from the fact that some new
modifications of the learning rule, reinforcing other aspects of the relationships
among patterns, may be developed.
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