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E. Mérida-Casermeiro1, D. López-Rodrı́guez1 and J. M. Ortiz-de-Lazcano-Lobato2
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Abstract. In this work a new algorithm to improve the performance of opti-
mization methods, by means of avoiding certain local optima, is described. Its
theoretical bases are presented in a rigorous, but intuitive, way. It has been ap-
plied concretely to the case of recurrent neural networks, in particular to MREM,
a multivalued recurrent model, that has proved to obtain very good results when
dealing with NP-complete combinatorial optimization problems. In order to show
its efficiency, the well-knownMaxCut problem for graphs has been selected as ben-
chmark. Our proposal outperforms other specialized and powerful techniques, as
shown by simulations.

1 Introduction
In specialized literature, the MaxCut problem is defined as follows: Given an undirected
weighted graph G = (V,E), where V = {vi} is the set of N vertices and E is the set
of ne edges, and edge weights are given by matrix C = (ci,j)i,j=1,...,N (meaning that
the weight or cost of the edge joining nodes i and j is ci,j ≥ 0), find a maximum cut
of G, i.e., a partition of V into two sets that maximizes the total cost of the edges with
endpoints in different sets.

This problem arises in the resolution of many practical or theoretical situations,
including pattern recognition, clustering, statistical physics and the design of commu-
nication networks, VLSI circuits and circuit layout [2]. So, this problem is well-known
in literature.

The original problem, with all its variants, is known to be NP-complete [5], making
its resolution computationally intractable.

In 1997, Alberti et al. presented a Hopfield-type neural model for MaxCut [1], but
its performance is worse than the one presented by Bertoni et al [3]. Takefuyi and his
colleagues [9] developed a powerful neural model named ‘maximum’ and it proved to
perform better than the rest of algorithms in solving a wide range of combinatorial opti-
mization problems. In the last few years, Galán-Marı́n et al. [4] proposed a new neural
model named OCHOM which obtains much more efficient solutions than ‘maximum’.
Moreover, it can be used for many problems and it also has the advantage of fast con-
vergence to a valid solution without tuning any parameter. In order to make OCHOM
escape from local minima, Wang et al.[10] have recently proposed a stochastic dyna-
mics for OCHOM, permitting temporary decreases of the objective function. Recently,
the best results to the moment were achieved by the application of a multivalued re-
current neural network (MREM) [8] that had proved to get very good results in some
combinatorial optimization problems, see [6, 7], allowingK-partitioning of a graph.
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In this work, we want to present an algorithm to improve the quality of the solutions
of this neural model, enhancing its performance, since it allows the net to escape from
certain local optima of its energy function.

2 Formal Description of the Problem
LetG = (V,E) be an undirected graph without self-connections. V = {vi} is the set of
vertices and E is the set of ne vertices. For each edge in E there is a weight ci,j ∈ R+.
All weights can be expressed by a symmetric real matrix C, with ci,j = 0 when it does
not exist an arc with endpoints vi and vj .
The Maximum Cut Problem (MaxCut): consists in finding a partition of V into

two subsets A1 and A2, such that
∑

vi∈A1,vj∈A2,i>j ci,j is maximum.
Generalization of the MaxCut Problem (K-MaxCut): It looks for a partition of

V into K disjoint sets Ai such that the sum of the weights of the edges from E that
have their endpoints in different elements of the partition is minimum. So, the function
to be maximized is ∑

vi∈Am,vj∈An,i>j

ci,j (1)

We will consider no restriction at all on the size of every subset Ai of the partition,
but it must be noted that any constraint imposed on the problem can be easily adapted
to the neural model.

3 The Neural Model
To solve the MaxCut problem, we have used the MREM neural model since this model
has been successfully used for other combinatorial optimization problems [6, 7].
The MREM neural model: It consists in a series of multivalued neurons, where

the state of i-th neuron is characterized by its output (si) that can take any value in any
finite setM. This set can be a non numerical one, but, in this paper, the neuron outputs
only take value inM ⊂ Z+.

The state vector !S = (s1, s2, . . . , sN ) ∈ MN describes the network state at any
time, where N is the number of neurons in the net. Associated with any state vector,
there is an energy function E : MN → R, defined by the expression:

E(!S) =
1
2

N∑

i=1

N∑

j=1

wi,jf(si, sj) (2)

whereW = (wi,j) is a matrix, f : M×M → R is usually a similarity function since
it measures the similarity between the outputs of neurons i and j. At each step, the state
vector will be evolving to decrease the energy function.

To solve the MaxCut problem with this neural net, we need as many neurons as
number of nodes N in the graph. Each neuron taking value si ∈ M = {1, 2, . . . ,K}
points to the subset of the partition where the i-th node is assigned to.

The cost function of the K-MaxCut problem, given by Eq. (1), must be identified
with the energy function of Eq. (2). So, for the general MaxCut problem, wi,j = ci,j

and f(x, y) = δx,y (Kronecker delta function), since it is equivalent to maximize the
cost of the edges cut by the partition and to minimize the cost of the edges whose
endpoints lie within the same group of the partition.
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Initially, the state of the net is randomly selected from a subset F ⊂ MN . At any
time, the net is looking for a better solution than the current one, in terms of minimizing
the energy function. To this end, multiple dynamics can be defined for the net, and we
will discuss them in the next section.

4 Neural Dynamics for MaxCut Problem
In this work, a simple but powerful dynamics, named best-2, has been implemented.
best-2: It consists in getting the greatest decrease of the energy function just by

changing the state of only two neurons at each time.
1. A state for the net is initially randomly assigned.
2. Repeat until no change in state vector:

(a) The scheduling selects a value d ∈ {1, . . . , &N
2 '}.

(b) The following can be made parallel: every neuron p studies all possibilities
of changing neurons p and q = (p + d) mod (N), with 0 < q ≤ N , i.e.,
p computes the potential associated to the possible changes, and it is stored
as a vector !up ∈ RK whose K components are the decrease of energy
associated to every possible change in the output of these two neurons, by
applying the expression−∆E =

∑N
i=1 (∆i,p + ∆i,q)−∆p,q where∆i,j =

wi,j

(
f(si, sj) − f(s′i, s′j)

)
, denoting si(t) = si and si(t + 1) = s′i .

(c) Neuron p computes !α(p) = max !up, associated to a state
!̃
Sp.

(d) The scheduling selects the next state of the net, !S(t + 1) = !̃
Sp for which

p = arg max !α.

5 Functional Annealing
In this Section, despite its neural application, we will rigorously present this optimi-
zation method, Functional Annealing (FA), giving basic theorems and results guaran-
teeing its convergence, although not including proofs, due to the restriction in the length
of this paper.
5.1 Theoretical Foundations
Suppose that a function F : V → R is to be minimized, where V is a discrete set (not
necessarily numerical). We will study the possibility of some slight modifications to
this function F in order to make easier its minimization.

To this end, a sequence {Fn}n≥1 of functions defined over the same set V is consi-
dered. The only hypothesis to be verified by Fn is that for each x ∈ V , Fn(x) → F (x).

We will assume that an iterative optimization technique is used to minimize each of
the functions Fn, starting from a random point x

(n)
1 and creating a sequence x(n)

k such
that que Fn(x(n)

k ) ≥ Fn(x(n)
k+1), that verifies limk→∞ x(n)

k = x(n)
∗ .

By using this way of building sequence x(n)
k , convergence of FA is assured by the

next result:
Theorem 5.1 Under the above assumptions, if we let x(n+1)

1 = x(n)
∗ , with a ran-

dom x(1)
1 , then the sequence Fn(x(n)

∗ ) is convergent and there exists x∗ with F (x∗) =
limn→∞ Fn(x(n)

∗ ) = limn→∞ F (x(n)
∗ ).
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This result states that if x(n)
∗ is taken as initial guess to minimize function Fn+1,

that is, x(n+1)
1 = x(n)

∗ , then the value of the successive objective functions evaluated at
x(n)
∗ converges. Its limit is also a value of the original objective function F .
A trivial result states that if x(n)

∗ is a global minimum of Fn for all n ≥ n0 ∈ N,
then x∗ is global minimum of F . This global result is hard to be verified. Some less
restricting results are presented next:
Lemma 5.2 Given x, x′ ∈ V with F (x) < F (x′), there exists n0 such that if n ≥ n0

then Fn(x) < Fn(x′).
Corollary 5.3 There exists n0 ∈ N such that for all x, x′ ∈ V with F (x) < F (x′), it
is obtained Fn(x) < Fn(x′) for all n ≥ n0.
Proposition 5.4 There exists n0 ∈ N such that if n ≥ n0, then Fn(x) ≤ Fn(x′) implies
that F (x) ≤ F (x′).

For this reason, it will not be necessary (in practice) to build the whole sequence
Fn, but it will suffice to minimize until a certain degree of approximation indicated by
Fn0 . In addition, this last result implies the following one:
Corollary 5.5 If x(n)

∗ is a local minimum of Fn for all n greater than a certain n0 ∈ N,
then x∗ is a local minimum of F .

It must be noted that every convergence result above only states the convergence of
{Fn(x(n)

∗ )}, to reach the conclusion of F (x∗) being a local minimum of F . But, under
these very general assumptions, it is not strictly true that x(n)

∗ → x∗. An additional
hypothesis must be assumed to this end.
Proposition 5.6 If every local minimum of F is strict, then x(n)

∗ is convergent, and its
limit is a local minimum of F .

So, in practice, it is guaranteed that x∗ is a local minimum of F and, since the se-
quence F (x(n)

∗ ) is not necessarily decreasing, it is expected that this technique escapes
from certain local minima, improving so the efficiency of the algorithm.

5.2 Application of ‘Functional Annealing’ to Neural Networks
Analogously to what has been explained in the previous section, since the function
to be minimized in case of recurrent neural networks is the energy function E, it can
be identified to the objective function F . So, the idea is to look for a sequence En

(analogue to Fn), converging to E, defined by Eq. (2), but easier to minimize than E.
In fact, every En+1 should be a little more difficult to minimize than the previous En.

Although this technique can be easily applied to Hopfield discrete network, it is
more useful to get based on the model MREM previously described, since it is a more
general model than Hopfield’s one, and solutions to many problems, including MaxCut,
are better represented with this multivalued model than with Hopfield’s.

The sequence of approximated energy functions we will consider is given by:

En(!S) = −1
2

N∑

i=1

N∑

j=1

w(n)
i,j f (n)(si, sj) (3)

whereW (n) = (w(n)
i,j ) is a sequence of matrices verifyingW (n) → W , and f (n) : M×

M → R is a sequence of functions such that f (n)(x, y) → f(x, y) for all x, y ∈ M.
Obviously, E(!S) = limn→∞ En(!S) for every state vector !S ∈ MN .
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The dynamics used to minimize En is exactly the proposed for the MREM model
above, best-2.

So, for every n, given !S(n)
1 , a sequence {!S(n)

i }i≥1, convergent to a vector !S(n)
∗ , is

obtained.
Theorem 5.7 Let !S(n+1)

1 = !S(n)
∗ , !S(1)

1 randomly chosen, then the sequences {En(S(n)
∗ )}

and {E(S(n)
∗ )} converge to E(!S∗) for some state vector !S∗ = limn→∞ !S(n)

∗ , and
E(!S∗) is a local minimum of the energy function E..

6 Experimental Results
For the MaxCut problem to be solved only a finite number of modified energy functions
is considered: {E1, E2, . . . , Enapp+1 = E}, where all weight matrices are equal to W

(W (n) = W ) and similarity functions are defined by the following expression:

f (n)(x, y) =
{

1 x = y
−αn x *= y

⇒ f (napp+1)(x, y) = f(x, y) = δx,y

where αn > 0 and αn → 0. For example, αn = −1
napp

(n − napp − 1).
This election reinforces the fact that high-cost arcs must be cut, that is, high-weighted

edges will tend to have their endpoints in different subsets of the resulting partition.
In order to show the advantage of applying FA to solve MaxCut, some random

test graphs have been considered. Each of them was formed based on two parame-
ters, N ∈ {20, 50, 100, 150, 200} (the cardinality of the set of vertices), and ρ ∈
{0.05, 0.25, 0.5, 0.75, 0.9} (the density of edges in the graph, meaning that ne is ap-
proximately ρN(N−1)

2 ). Weights for edges were integers randomly chosen in [1, 5]. For
this set to be complete, the values for the parameters were chosen to cover a wide range
of graphs. In this case,K = 2, that is, we have considered bipartitioning. Experimental
results are shown in table 1. In this case, we have considered napp = 5.

We can see that Wang’s method presents the worst results on average, while FA
produces the best ones. It must be noted that best-2 makes MREM a very powerful
algorithm, as well as OCHOM, so even a little improvement of FA over simple MREM
becomes very important.

It must also be noted that time in FA is not multiplied by 6 when compared to
MREM. The time spent by FA is on average about 3.3 times the spent by MREM.

7 Conclusions and Future Work
In this work we have presented a new general optimization technique that allows to
avoid certain local minima, improving considerably the quality of the solutions obtained
by several algorithms.

Its theoretical foundations have been proposed, based on very applicable and gene-
ral enough results, which could be the basis for a more general optimization theory. In
addition, its neural application has been presented, showing its possible use in this case.

To test this new technique, the well-known MaxCut Problem has been chosen, since
it is an important benchmark for combinatorial optimization algorithms, presenting
many methods for its approximated resolution, some of them being very powerful, as
MREM or OCHOM.
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best-2 FA OCHOM Wang
N ρ Opt Av Opt Av Opt Av Opt Av

0.05 42.9 42.79 42.9 42.87 42.9 42.11 42.9 31.51
0.25 49 48.71 49 48.79 48.7 47.95 49 35.06

20 0.50 54.8 54.42 54.8 54.59 54.8 53.26 53.9 37.77
0.75 60.7 60.02 60.7 60.25 60.7 59.06 60.7 40.88
0.90 64.4 63.93 64.4 64.01 63.9 62.84 64.2 46.45
0.05 51.1 50.85 51.1 50.94 51.1 50.1 51 38.95
0.25 86.8 85.63 86.8 85.84 86.1 83.59 86.7 51.98

50 0.50 120.3 119.26 120.3 119.63 120.3 117.94 120.1 92.67
0.75 154.3 152.73 154.3 152.81 153.5 150.78 154.3 109.52
0.90 173.7 171.62 173.7 171.99 173.4 171.11 171.9 82.24
0.05 80.4 79.34 80.6 79.88 79 77 78.8 57.72
0.25 207.1 203.79 207.1 204.09 207.4 201.52 202.5 143.26

100 0.50 345.7 342.92 347 343.65 345 340.5 345 182.03
0.75 475 471.45 475 472.19 475 468.29 473.6 333.03
0.90 534 532.03 534.7 532.59 535.6 529.86 531.2 323.28
0.05 127.9 126.16 127.9 126.7 124.5 121.95 125.2 101.6
0.25 386.5 382.89 387.8 384.4 384.3 377.76 380.2 267.08

150 0.50 690.6 685.03 690.6 685.4 688.6 683.1 686.8 416.94
0.75 990.1 985.56 991.1 986.93 990 985.92 990.1 599.64
0.90 1157.1 1153.15 1157.1 1153.56 1154.3 1150.67 1148.8 694.86
0.05 194.7 192.32 195.5 193.87 192.9 187.15 192.6 163.5
0.25 6075 6009 6080 6040.7 6020 5966.7 6052 2413.2

200 0.50 11260 11194.7 11303 11228.5 11269 11206.7 11113 6667.8
0.75 16650 16579.5 16677 16601.1 16599 16529.1 16498 13198.4
0.90 19625 19520.8 19625 19532.6 19555 19439.5 19430 9715

Table 1: 2-MaxCut comparative results.
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work for the Traveling Salesman Problem. Neural Processing Letters 14:203-216, 2001.
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