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Abstract. In this work we propose a recurrent multivalued network,
generalizing Hopfield’s model, which can be interpreted as a vector quan-
tifier. We explain the model and establish a relation between vector quan-
tization and sum-of-squares clustering. To test the efficiency of this model
as vector quantifier, we apply this new technique to image compression.
Two well-known images are used as benchmark, allowing us to compare
our model to standard competitive learning. In our simulations, our new
technique clearly outperforms the classical algorithm for vector quan-
tization, achieving not only a better distortion rate, but even reducing
drastically the computational time.

1 Introduction

Compressing an image is a significantly different task than compressing raw bi-
nary data. Although general purpose compression techniques can be used to
compress images, the result is less than optimal. The reason is that images
have certain statistical properties which in turn may be exploited by encoders
specifically designed for this task. Also, some of the finer details in the im-
age can be sacrificed for the sake of saving a little more bandwidth or storage
space. This fact also means that lossy compression techniques can be used in
this area.

Lossless compression involves with compressing data which, when decom-
pressed, will be an exact replica of the original data. Lossless compression is
applied to binary data as executables or documents, which need to be exactly
reproduced when decompressed. On the other hand, images need not to be repro-
duced exactly in their original form, but an approximation of the original image
is enough for most purposes, as long as the error, obtained in the compression
phase, between the original and the reproduced image is tolerable.
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Some error measures, commonly used in image compression, are:

– The mean square error (MSE), given by:

MSE =
1

MN

M∑

i=1

N∑

j=1

[I(i, j) − I ′(i, j)]2

where I is the original image, I ′ is the approximated version (which is actu-
ally the decompressed image) and M , N are the dimensions of the images.
A lower value for MSE means lesser error.

– The Peak Signal to Noise Ratio (PSNR), given by:

PSNR = 20 log10

(
255√
MSE

)

which achieves high value when MSE is low. So a good technique will obtain
a high value for PSNR.

– The mean distortion, used in Vector Quantization (VQ), which will be de-
fined in the next section.

We can use any of these three error measures to quantify the goodness of a
compression technique. In the present work, we use the mean distortion measure,
since it is more appropriate when dealing with VQ.

According to Egmont-Petersen et al. [5], two different types of image compres-
sion approaches with neural networks (ANNs) can be identified: direct pixel-
based encoding-decoding by one ANN [2,7,16,17] and pixel-based encoding-
decoding based on a modular approach [3,4,12,18,20,21]. Different types of ANNs
have been trained to perform image compression: feed-forward networks
[3,4,16,17,18,20,21], Kohonen Self-Organizing Maps (SOMs) [2,7], adaptive fuzzy
leader clustering (a fuzzy ART-like approach) [12], a learning vector quantifier
[21] and a radial basis function network [16].

Other approaches are based on competitive neural networks. The aim of com-
petitive neural networks is to cluster the input vectors and it can be used for
data coding and compression through vector quantization. It has been shown
that competitive learning is an appropriate algorithm for VQ of unlabeled data.
Ahalt, Krishnamurthy and Chen [1] discussed the application of competitive
learning neural networks to VQ and developed a new training algorithm for
designing VQ codebooks which yields near-optimal results and can be used to
develop adaptive vector quantifiers. Yair, Zeger and Gersho [22] have proposed
a deterministic VQ design algorithm, called the soft competition scheme, which
updates all the codevectors simultaneously with a step size that is proportional
to its probability of winning. In [15], Pal, Bezdek and Tsao proposed a gener-
alization of learning VQ for clustering which avoids the necessity of defining an
update neighbourhood scheme and the final centroids do not seem sensitive to
initialization. Ueda and Nakano presented a new competitive learning algorithm
with a selection mechanism based on the equidistortion principle for designing
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optimal vector quantizers [19]. The selection mechanism enables the system to
escape from local minima.

Recently, Muñoz-Perez et al. [13] proposed an expansive and competitive
learning for VQ capable to avoid local minima of the distortion function, and
presented some optimality conditions for the set of codewords.

ANN approaches have to compete with well-established compression tech-
niques such as JPEG, which should serve as a reference. The major advantage
of ANNs is that their parameters are adaptable, which may give better compres-
sion rates when trained on specific image material. However, such a specialization
becomes a drawback when novel types of images have to be compressed.

In this work, we propose a vector quantization approach to image compression
by means of a discrete recurrent model, comparing its efficiency to that of the
classical competitive learning.

2 Vector Quantization and Competitive Learning

A vector quantifier of dimension d and size K is a mapping Q from the d-
dimensional Euclidean space R

d into a finite subset C = {c1, . . . , cK} of R
d

containing K output or representative vectors, called code vectors, reference vec-
tors, reproduction vectors, prototypes or codewords. The collection of all possible
reproduction vectors is called the reproduction alphabet or more commonly the
codebook. Hence, the input vector space, R

d, is divided into K disjoint regions,
C1, . . . , CK , where

Ck = {x ∈ R
d : Q(x) = ck}

All inputs vectors in Ck are approximated by ck. The cost introduced by this ap-
proximation is given by a nonnegative distortion measure, usually the Euclidean
distance between x and the corresponding ck = Q(x).

For a finite training set, X = {x1, . . . , xN}, the vector quantization is a
combinatorial problem that attempts to represent X (with large information
contents) by a reduced set of codewords C. In other words, the goal is to select
a set C of codewords such that the mean distortion function:

D(C) =
1
N

K∑

k=1

∑

i|xi∈Ck

||xi − ck||2 (1)

is minimum. This distortion function is generally not convex.
The standard competitive learning algorithm is a stochastic gradient descent

approach to minimize this function. It consists in:

1. Selecting a point x ∈ X and determining ck = Q(x).
2. Updating ck with the rule Δck = αn(x− ck), where αn is the learning rate

at the n-th training epoch.
3. Repeat the previous points until a maximum of training epochs is reached

or convergence is detected.

With this algorithm, it is guaranteed that ck is the centroid of Ck, and it is
the best representative vector of Ck.
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3 The MREM Model

Let us consider a recurrent neural network formed by N neurons, where the state
of each neuron i = 1, . . . , N is defined by its output si taking values in any finite
set M = {m1, m2, . . . , mL}. This set does not need to be numerical.

The state of the network, at time t, is given by a N -dimensional vector,
S(t) = (s1(t), s2(t), . . . , sN(t)) ∈ MN . Associated to every state vector, an
energy function, is defined:

E(S) = −1
2

N∑

i=1

N∑

j=1

wijf(si, sj) +
N∑

i=1

θi(si) (2)

where wi,j is the weight of the connection from the j-th neuron to the i-th
neuron, f : M×M → R can be considered as a measure of similarity between
the outputs of two neurons, usually verifying the conditions mentioned in [9]:

1. For all x ∈ M, f(x, x) = c ∈ R.
2. f is a symmetric function: for every x, y ∈ M, f(x, y) = f(y, x).
3. If x �= y, then f(x, y) ≤ c.

and θi : M → R are the threshold functions. Since thresholds will not be used
for image compression, therefore we will consider θi to be the zero function for
all i = 1, . . . , N .

The introduction of this similarity function provides, to the network, of a
wide range of possibilities to represent different problems [9,10]. So, it leads to
a better and richer (giving more information) representation of problems than
other multivalued models, as SOAR and MAREN [6,14], since in those models
most of the information enclosed in the multivalued representation is lost by the
use of the signum function that only produces values in {−1, 0, 1}.

If function f(x, y) = 2δx,y−1, which equals 1 if and only if its two parameters
coincide, and −1 in the rest of cases, is used and M = {−1, 1}, MREM reduces
to Hopfield’s bipolar model (BH) [8]. So, MREM is a powerful generalization
of BH and other multivalued models, because it is capable of representing the
information more accurately than those models.

The energy function characterizes the dynamics of the net, as happened in
BH. In every instant, the net evolves to reach a state of lower energy than the
current one.

In this work, we have considered discrete time and semi-parallel dynamics,
where only one neuron is updated at time t. The next state of the net will be
the one that achieves the greatest descent of the energy function by changing
only one neuron output.

Let us consider a total order in M. The potential increment when p-th neuron
changes its output from sp to l ∈ M at time t, is

Up(l) = −ΔE =
1
2

N∑

i=1

[wp,if(l, si(t)) + wi,pf(si(t), l)−
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−(wp,if(sp(t), si(t)) + wi,pf(si(t), sp(t)))] − 1
2
wp,p[f(l, l)− f(sp(t), sp(t))] (3)

If f verifies the similarity conditions and if matrix W is symmetric and wp,p =
0 (as in the case of the problem studied in this paper, it will be made clearer in
the next section), then the reduced potential increment is obtained:

U∗
p (l) =

1
2

N∑

j=1

wp,j [f(sp, sj) − f(l, sj)] (4)

We use the following updating rule for the neuron outputs:

sp(t + 1) =
{

l, if Ua(l) ≥ Uq(k)∀k ∈ M and ∀q ∈ {1, . . . , N}
sp(t), otherwise (5)

This means that each neuron computes in parallel the value of a L-dimensional
vector of potentials, related to the energy decrement produced if the neuron state
is changed. The only neuron changing its current state is the one producing the
maximum decrease of energy.

It has been proved that the MREM model with this dynamics always con-
verges to a minimal state [9]. This result is particularly important when dealing
with combinatorial optimization problems, where the application of MREM has
been very fruitful [9,10].

4 Two-Stage Image Compression with MREM

In this section we will describe the two-stage VQ algorithm that uses the multi-
valued model MREM in its first phase.

4.1 Clustering with MREM

In the first stage, MREM is used to obtain a good clustering of the input pattern
set.

In order to apply MREM at this step, this clustering problem must be for-
mulated as an optimization task.

Although there are lots of possible formulations for this clustering problem,
one of the most used formulations consists in minimizing the sum of intra-cluster
distances, that is, if X = {x1, . . . , xN} is the pattern set to be clustered into K
groups, we look forward to minimizing the quantity:

d =
K∑

k=1

∑

i|xi∈Ck

∑

j|xj∈Ck

||xi − xj ||

which is the sum of the distances between patterns in the same cluster. With
this formulation, we will obtain homogeneous clusters.
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The above expression can be easily re-written as

d =
N∑

i=1

N∑

j=1

||xi − xj ||ρxi,xj (6)

where ρx,y equals 1 if and only if x and y belong to the same cluster, otherwise
it will be 0.

This new expression can be used to an energy function for the MREM model.
Thus, let us consider a neural network with N neurons. The output si of the

i-th neuron belongs to the set M = {1, . . . , K}, meaning that the pattern xi is
assigned to the si-th cluster.

If we compare Eq. (2) and Eq. (6), and taking into account that θi is the zero
function for all i, we can obtain the value for the synaptic weights wi,j and an
appropriate definition of the similarity function.

This comparison leads us to define:

wi,j = −2||xi − xj ||

and

f(a, b) = δa,b =
{

1, if a = b
0, otherwise

So, the energy function will be as follows:

E =
N∑

i=1

N∑

j=1

||xi − xj ||δsi,sj (7)

that is, the sum of intra-cluster distances.
In order to minimize this energy function, we propose semi-parallel dynamics

for the network, as mentioned before:

– In parallel, each neuron computes a vector of reduced potential increments,
Vp = (U∗

p (1), . . . , U∗
p (K)), by using Eq. (4), which in this case is

U∗
p (l) =

1
2

N∑

j=1

||xp − xj ||
[
δsp,sj − δl,sj

]

– Each neuron computes in parallel the maximum potential in its correspond-
ing Vp. It will be stored in vp = max(Vp) and np will be the value of
l ∈ {1, . . . , K} which produces the maximum potential increment in Vp.

– The scheduling selects the neuron q for which vq ≥ vp for all p ∈ {1, . . . , N},
and updates its output according to sq = nq. This last step is not made in
parallel.

With this dynamics, the energy function is minimized and therefore a clus-
tering of the input pattern space is obtained.



Image Compression by VQ with Recurrent Discrete Networks 601

4.2 Computation of the Codebook

In this second stage, we use the recently obtained clustering to compute the set
of codewords.

As we want the mean distortion, given by Eq. (1), to be minimized, we com-
pute ck as the centroid of the k-th cluster Ck, that is,

ck =
1

Nk

∑

i|xi∈Ck

xi

where Nk is the number of patterns that belong to Ck.
So, we have guaranteed the (local) optimality of the codebook.

(a) (b)

Fig. 1. Test images used in this work: (a) cameraman, (b) lenna

5 Experimental Results

Two well-known images have been used in this work to show the efficiency of
the proposed technique: cameraman and lenna, see Fig 1.

The size of these images was 256x256 pixels, with 256 graylevels. Each image
was divided into windows of size L ∈ {8, 10, 12, 16}, obtaining a total of 2562

L2

windows. Every window is represented by a L2-dimensional vector.
Every component of these vectors is normalized to avoid the negative effect

of a bad scaling.
This set of vectors is then clustered to obtain K ∈ {16, 32} prototypes and the

mean distortion is measured. The results of mean distortion achieved in these
experiments are shown in Tables 1 and 2.

In these Tables, a comparison with Standard Competitive Learning (SCL) is
made. The learning rate αn of SCL decreased from 0.9 to 0.01 for 100 train-
ing epochs, and 10 executions were performed for each image and algorithm.
Columns labeled Min. and Av. show the minimum and average mean distortion
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Table 1. Mean distorsion for cameraman image

MREM SCL
L K N Min. Av. t Min. Av. t Impr.

16 16 256 5.31 5.35 0.1946 14.65 14.75 16.4758 175.7%
16 32 256 4.68 4.78 0.3860 14.61 14.69 29.9586 207.3%

12 16 441 3.52 3.56 0.4532 10.79 10.85 20.2672 204.7%
12 32 441 3.19 3.21 0.8867 10.66 10.76 39.5268 235.2%

10 16 625 2.76 2.81 1.1248 8.80 8.88 27.2470 216.0%
10 32 625 2.47 2.50 1.9042 8.84 8.91 50.5668 256.4%

8 16 1024 2.07 2.08 3.7546 6.94 7.02 47.9990 237.5%
8 32 1024 1.86 1.88 7.7969 6.89 6.94 64.9956 269.1%

Table 2. Mean distorsion for lenna image

MREM SCL
L K N Min. Av. t Min. Av. t Impr.

16 16 256 7.12 7.19 0.1725 16.37 16.50 20.2954 129.4%
16 32 256 6.33 6.37 0.3377 16.28 16.41 35.6092 157.6%

12 16 441 4.69 4.72 0.4157 12.15 12.23 22.2540 159.1%
12 32 441 4.12 4.14 0.8644 12.08 12.13 45.0909 192.9%

10 16 625 3.72 3.75 0.8182 9.84 9.99 27.6838 166.4%
10 32 625 3.24 3.26 1.7484 9.86 9.94 46.1765 204.9%

8 16 1024 2.66 2.67 3.2199 7.75 7.82 46.6706 192.8%
8 32 1024 2.32 2.34 7.9586 7.75 7.78 76.5742 232.4%

achieved by the two algorithms. Columns labeled t contain the time spent by
each of them. In the last column, Impr., a measure of the improvement achieved
by MREM over SCL:

Impr. =
AvSCL − AvMREM

AvMREM
· 100

It is remarkable that MREM highly outperforms SCL on average quality in
all cases, achieving improvements of about 150-200%. The time spent by MREM
is also a fraction of the spent by SCL. So, MREM is much more efficient than
SCL.

In order to show the efficiency of this technique, we have made a simulation
in which L = 4. If K = 32 representatives are used, and L = 4, then 128 bits
are needed to represent each window, but only 5 to represent the codewords, so
we may obtain a compression rate of 128 to 5, that is, 25 to 1 approximately.
By using JPG compression, we obtained 45Kb for the original cameraman im-
age, 34Kb for the SCL-compressed and 29Kb for the MREM-compressed. For
lenna image, these quantities were 43, 32 and 35Kb, respectively. In Fig. 2, the
compressed images, obtained by both techniques, are shown.
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(a) (b)

Fig. 2. Compressed test images with L = 4 and K = 32: (a) by using Standard
Competitive Learning (distortions=3.18 and 3.56, from up to down) and (b) by using
MREM (distortions=0.67 and 0.81, respectively)

6 Conclusions

In this work we have proposed an alternative method to competitive learning in
vector quantization tasks.

This approach is based on a multivalued recurrent network suitable for
combinatorial optimization problems, as proved in other works. The intrinsic
semi-parallelism provided by this model improves the efficiency of the net when
compared to SCL, since the time consumption is drastically reduced. We have
applied this approach to image compression, achieving great advantages over
SCL, not only on computational time, but even on quality of the quantization,
obtaining improvements above 100%. One of the reasons for this improvement
is that our algorithm divides the entire task of vector quantization into a two-
stage problem: first, it finds a (locally) optimal clustering of the input pat-
tern space, and then it computes the optimal codebook associated to the given
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partition. Our future work in this problem consists in finding new formulations
to help MREM avoid local minima in the clustering task, which will lead to an
improvement of the quantization results.
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valued neural network for the N-queens problem, Lecture Notes in Computer Science
2084, 522–529, 2001.
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