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Abstract. Here we present a novel probability density estimation model. The 
classical Parzen window approach builds a spherical Gaussian density around 
every input sample. Our proposal selects a Gaussian specifically tuned for each 
sample, with an automated estimation of the local intrinsic dimensionality of 
the embedded manifold and the local noise variance. This leads to outperform 
other proposals where local parameter selection is not allowed, like the mani-
fold Parzen windows. 

1   Introduction 

The estimation of the unknown probability density function (PDF) of a continuous 
distribution from a set of data points forming a representative sample drawn from the 
underlying density is a problem of fundamental importance to all aspects of machine 
learning and pattern recognition (see [1], [2] and [3]).  

Parametric approaches make assumptions about the unknown distribution. They 
consider, a priori, a particular functional form for the PDF and reduce the problem to 
the estimation of the required functional parameters. On the other hand, nonparamet-
ric methods make less rigid assumptions. Thus they are more flexible and they usually 
provide better results. Popular nonparametric methods include the histogram, kernel 
estimation, nearest neighbor methods and restricted maximum likelihood methods, as 
can be found in [4], [5], [6] and [7].   

The kernel density estimator, also commonly referred as the Parzen window esti-
mator, [9], places a Gaussian kernel on each data point of the training set. Then, the 
PDF is approximated by summing all the kernels, which are multiplied by a normaliz-
ing factor. Thus, this model can be viewed as a finite mixture model (see [8]) where 
the number of mixture components will equal the number of points in the data sample. 
The parameter which defines the shape of those components, i.e. the covariance of the 
Gaussian kernel, is the same for all of them and the estimation of the arbitrary distri-
bution is, therefore, penalized because of the poor adaptation to local structures of the 
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data. Besides, most of the time, Parzen windows estimates are built using a “spherical 
Gaussian” with a single scalar variance parameter 2σ , which spreads the density 
mass equally along all input space directions and gives too much probability to irrele-
vant regions of space and too little along the principal directions of variance of the 
distribution. This drawback is partially solved in Manifold Parzen Windows algo-
rithm, [10], where a different covariance matrix is calculated for each component. On 
the other hand, this model considers that the true density mass of the dataset is con-
centrated in a non-linear lower dimensional manifold embedded in the higher dimen-
sional input space. In this sense, only information about directions of the lower di-
mensional manifold will be preserved in order to reduce the memory cost of the 
model. There is also a unique regularization parameter which is used to represent the 
variance in the discarded directions of the components, as it will be explained more 
detailed in section 2. 

We present, in section 3, a model that selects automatically the adequate values for 
some parameters of the Manifold Parzen Windows model. Our method chooses the 
right dimensionality of the manifold according to a quality criterion specified by the 
user, which is the percentage of neighbourhood variance we want to be retained in 
each component. In a similar way, the regularization variance parameter will be se-
lected by the method itself without the aid of human knowledge. Therefore the time 
invested in tuning the parameters to obtain good density estimations will be dimin-
ished. We show some experimental results, in section 4, where the selection achieved 
by our method produces more precise estimations that the Manifold Parzen Windows 
one. 

2   The Manifold Parzen Windows Method 

Let X be an n-dimensional random variable and pX() an arbitrary probability density 
function over X which is unknown and we want to estimate. The training set of the 
algorithm is formed by l samples of the random variable and the density estimator has 
the form of a mixture of Gaussians, whose covariances Ci may be identical or not: 
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where μ is the mean vector, C is the covariance matrix and |C| the determinant of C. 
The density mass is expected to concentrate close  to an underlying non-linear lower 

dimensional manifold and, thus, the Gaussians would be “pancakes” aligned with the 
plane locally tangent to that manifold. Without prior knowledge about the distribution  
pX() the information about the tangent plane is provided by the samples of the training 
set. Thus the principal directions of the samples in the neighbourhood of each sample xi 
will be computed. The local knowledge about the principal directions will be obtained 
when we calculate the weighted covariance matrix 

i
Cκ for each sample: 
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where (xj-xi)’ (xj-xi) denotes the outer product and К(x, xi) is a neighbourhood kernel 
centered in xi  which will associate an influence weight to any point x in the vicinity 
of xi. 

Vincent and Bengio propose in [10] the utilization of a hard k-neighbourhood 
which assigns a weight of 1 to any point no further than the k-th nearest neighbour of 
the  sample xi  among the training set, according to some metric such as the Euclidean 
distance in input space, and setting the weight to 0 to those points further than the k-
neighbour. This approach usually involves 

i
Cκ to be ill-conditioned so it is slightly 

modified by adding a small isotropic Gaussian noise of variance 2σ   
2

iiC C Iκ σ= +  (4) 

When we deal with high dimensional training datasets it would be prohibitive in com-
putation time and storage to keep and use each full covariance matrix iC . Therefore, a 

compacted representation of them is preserved, storing only the eigenvectors associ-
ated with the first d  largest eigenvalues of them, where d is chosen by the user of the 
algorithm and is fixed for each covariance matrix. The eigenvectors related to the 
largest eigenvalues of the covariance matrix correspond to the principal directions of 
the local neighbourhood, i.e. the high variance local directions of the supposed under-
lying d-dimensional manifold. The last few eigenvalues and eigenvectors are but 
noise directions with a small variance and a same low noise level, which is also the 
same 2σ  it was used before,  is employed for them. 

Once the model has been trained any sample of the distribution may be tested. The 
probability density estimation for the sample will be computed by the average of the 
probability density provided by the l local Gaussians as was mentioned in (1). 

3   Dynamic Parameter Selection in Manifold Parzen Windows 
Algorithm 

We extend the training of Vincent and Bengio’s method [10], by providing a more 
automatic way to estimate density functions.  

First we incorporate the capacity of estimating the intrinsic dimensionality, i.e. the 
needed number of principal directions d, of the underlying manifold for each 
neighbourhood. The cause is that we use a qualitative parameter, α, which represents 
the explained variance by the principal directions of the local manifold. Then, the 
method will be able to choose by itself the minimum number of eigenvectors which 
retain a particular amount of the variance presented in the vicinity of each training 
sample.  This method has been employed in [11] and [12] with good results. 

A second level of automated adaptation to the data will be added by means of a  
parameter γ. This parameter will enable the method to select the right noise level for 
discarded directions. So, a better adaptation of the model to the unknown distribution 
will be achieved. 
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3.1   The Explained Variance Method 

The explained variance method considers a variable number, Di, of eigenvalues and 
their corresponding eigenvectors to be kept which is computed independently for each 
sample xi. This number reflects the intrinsic dimensionality of the lower dimensional 
manifold where the data lies for the neighbourhood of xi. Through the training process 
the method ensures that a minimum amount of variance is conserved in order to sat-
isfy the level of accuracy, [0,1]α ∈ , chosen by the user. The number of principal di-
rections which are preserved is set consequently to the minimum value which allows 
us to reach that level at least. 

The most precise estimation of the data in the neighbourhood of a sample can be 
achieved if we conserve the full covariance matrix, i. e. we keep information about 
every direction, because it will be more likely to discover the right dimensionality of 
the underlying manifold. On the other hand, the worst estimation will be obtained 
when all the directions are ignored and the sample xi is the only statistical information 
which is kept, i.e. when we lose all the variance relative to the directions of the em-
bedded manifold. Thus, the lost variance when no directions are kept, V0, can be de-
fined as: 
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with  p
iλ  the p eigenvalue of the covariance matrix 

i
Cκ , which are supposed to be 

sorted in decreasing order, and D the dimension of the training samples. 
In any other situation the discarded variance, VZ, depends on the number, Z, of 

principal directions conserved: 
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Our goal is to obtain the most compressed representation of the covariance 
i

Cκ , 

while the model maintains a minimum level of quality α. with respect to the maxi-
mum accuracy the method can achieve. Let V0 – VZ be the amount of error (we must 
remember that the more variance is lost the less precise the estimation will be) elimi-
nated when we conserve information about the Z principal directions. Then 
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Substitution of (5) and (6) into (7) yields 
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It is well known that the sum of variances of a dataset equals the trace of  the co-
variance matrix for this dataset, therefore equation (8) can be simplified as follows: 
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The quotient between λi
p and  trace(

i
Cκ ) is the amount of variance  explained by the 

pth principal direction of the estimated manifold. Thus, if we sum these quotients for 
all the retained directions, we can see the parameter α as the amount of variance 
which we want to be retained in each neighbourhood.  Hence, we select Di so that the 
amount of variance explained by the directions associated to the Di largest eigenval-
ues is at least α. 

3.2   The Qualitative Parameter γ 

With the variance explained parameter our aim is to add the model the ability to adapt 
by itself to the local properties of the distribution. Thus, it saves memory space which 
is not required, i. e. only the necessary information of the covariance of each 
neighbourhood will be stored. 

The same idea was applied to deal with the parameter 2σ , which controls the width 
of the Gaussians in Manifold Parzen Windows method. In order to take into consid-
eration the local structure and to obtain better estimators, the noise variance for each 
neighbourhood is determined by 

2 iD
i iσ γ λ= ⋅  (10) 

where [0,1]γ ∈  and iD
iλ is the last of the preserved eigenvalues, i.e. the smallest of the 

first Di largest eigenvalues. 
As can be noticed there is a close relation between α and γ. If we use a value for α 

near to 0 then we likely retain only the first eigenvalue, which is associated to the first 
principal direction of the data. Therefore, it encompasses a great percentage of the 
total variance of the distribution. This means that iD

iλ  will be large and the noise vari-

ance will be set to a relatively large value. This implies that the Gaussian for the  i 
neighbourhood will be widened along the discarded directions. In the opposite case, if 
a value near to 1 is assigned to α, then we store nearly all the eigenvalues and eigen-
vectors of the covariance matrix. The last retained eigenvalue will be very small and 
independently of the value of γ the noise variance will be set to a value near 0. This is 
in consonance with the fact that if we conserve all the information about the direc-
tions of change then there is not noise variance, because there is not any discarded 
dimension. In subsection 4.2, we present some plots where the fact just commented 
can be observed. 

3.3   Parzen Manifold Windows with Qualitative Parameters 

The proposed algorithm is designed to estimate an unknown density distribution pX() 
which the l samples of the training dataset are generated from. The generated estima-
tor will be formed by a mixture of l Gaussians, one for each sample. Their shapes are 
adapted to the adequate local structure of the neighbourhoods through the training 
process and rely on the user specified qualitative parameters. The user chooses both 
the quality of the estimation, expressed by the explained variance parameter α; and γ, 
which means the width of the Gaussians in the discarded directions relative to the 
width in the last conserved direction. 
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The training method can be summarized as follows: 

1. Take the training sample xi with { }1,2,...,i l∈ . Initially the first sample x1 is 

selected. 
2. Compute the covariance matrix 

i
Cκ following (3) where only the k nearest 

neighbours  xj  of xi are considered. 
3. Extract the eigenvalues and eigenvectors from 

i
Cκ  and estimate the dimen-

sionality of the underlying manifold Di, by means of (9) 
4. Use (10) to calculate 2

iσ , the noise variance for the discarded directions. 

5. Store the local model, i. e., the  first Di eigenvectors and eigenvalues, the lo-
cal noise level 2

iσ , the l samples and the number of  neighbours k. 

6. Go to step 1, and continue the training process for the next sample. If there 
are not more samples to process, the algorithm finishes. 

4   Experimental Results 

This section shows some experiments we have designed in order to compare quality 
of density estimation presented by our method, we term MparzenQuality throughout 
this whole section and by the Vincent and Bengio’s one, which will be referred as 
MParzen. For this purpose the measure used was the average negative log likelihood 

1

1
ˆlog ( )

m

ii
ANLL p x

m =
= − ∑  (11) 

where ˆ ( )p x  is the estimator, and the training dataset is formed by m examples xi. 

4.1   Experiment on 2D Artificial Data 

A training set of 300 points, a validation set of 300 points and a test set of 10000 
points were generated from the following distribution of two dimensional (x,y) points: 

0.04 sin( ) , 0.04 cos( )x yx t t y t tε ε= + = +  
 

 

where (3,15), (0,0.01), (0,0.01), ( , )x yt U N N U a bε ε∼ ∼ ∼  is uniform in the interval (a,b) 

and ( , )N μ σ  is a normal density. 
We trained a MParzenQuality model with explained variance 0.1 and 0.9 on the 

training set. The parameters k and γ were tuned to achieve the best performance on the 
validation test. On the other hand, MParzen with d = 1 and d = 2 was trained and the 
rest of its parameters were also tuned. 

Quantitative comparative results of the two models are reported en Table 1, where 
it can be seen that our model outperforms the previous one in density distribution 
estimation. Figure 1 shows the results obtained when we applied the models on the 
test set. Darker areas represent zones with high density mass and lighter ones indi-
cates the estimator has detected a low density area. 
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Fig. 1. Density estimation for the 2D artificial dataset, MParzen model (left) and MParzenQuality 
(right) 

We can see in the plots that our model has less density holes (light areas) and less 
‘bumpiness’. This means that our model represents more accurately the true distribu-
tion, which has no holes and is completely smooth. We can see that the quantitative 
ANLL results agree with the plots. So, our model outperforms clearly the MParzen 
approach. 

Table 1. Comparative results on the espiral dataset 

Algorithm Parameters used ANLL on test-set 
MParzen d =1, k =11, 2σ = 0.009 -1.466 
MParzen d =2, k =10, 2σ = 0.00001 -1.419 
MParzenQuality α =0.1, k = 10,  γ = 0.1 -2.204 
MParzenQuality α =0.9, k = 10,  γ = 0.1 -2.116 

4.2   Density Estimation on Astronomical Data 

The dataset comes from the VizieR service [13], which is an information system for 
astronomical data. In particular, we have selected the Table 6 of the Complete near-
infrared and optical photometric CDFS Catalog from Las Campanas Infrared Survey 
[14]. We have extracted 22 numerical features from 10,000 stars. Hence, we have 
10,000 sample vectors. These data have been normalized in order to cope with the 
variability and the very heterogeneous scaling of the original data. This dataset has 
been split randomly in a training set (10% of the dataset), validation set (10%) and 
test set (the remaining 80%). 

We have carried out simulation runs for MParzen with the number of dimensions 
retained from 1 to 6. For each of those values we have tried the following noise lev-
els: 2σ  = 0.09, 0.1, 0.11, 0.13, 0.15, 0.17, 0.19, 0.3 and 0.5 (values near 0.11, which 
generates good performance). The simulations with the MParzenQuality model have 
been carried out with the following parameter values: α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8 and 0.9; γ = 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.1, 0.2, 0.3, 0.4 and 0.5. In 
both models we have tried the following numbers of neighbours: 10, 15 and 20. 

In Figure 2 the ANLL of the models is plotted versus the number of retained prin-
cipal directions. For each value of d or α, only the best performing combination of the  
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rest of the parameters is shown in the plot. Please note that for the MParzenQuality 
model the average of the principal directions retained is averaged over all the sam-
ples, so fractional values of dimensionality are shown. It can be observed that our 
proposal is clearly superior in all conditions. 

It should also be noted that with the MParzen model we have detected serious 
problems with the outliers. The original VizieR dataset is fairly uniform, but there are 
3 outliers. These data samples caused the MParzen model to completely fail the 
ANLL performance test, because the model assigned a zero probability to these  
samples, up to double precision calculations, yielding a plus infinite ANLL. Our 
MParzenQuality model did not suffer from this problem, showing a better probability 
density allocation. These outliers have been removed in order to perform the tests 
corresponding to Figure 2. 
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Fig. 2. Results with the VizieR astronomical dataset 

A set of curves which represents the contribution of the qualitative parameters 
when we employ 15 neighbours for each data sample is presented in Figure 3. 
 

Fig. 3. Relationship of the qualitative parameters and the quality of the results 
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Similar conclusions may be extracted for both plots. First when the explained vari-
ance is fixed to a small percentage, then smaller values for parameter γ produces more 
adequate width for the “pancakes” and, thus, better results (see the minimum values 
for the curves of the left plot). On the other hand, if  parameter α is greater than 0.5 
then the last preserved eigenvalue is  small, and the width of the Gaussians will be too 
narrow if the value assigned to γ is not chosen high enough. A compromise value γ is 
0.2, which maintains an average performance, although it does not achieve the best 
results. 

5   Conclusions 

We have presented a probability density estimation model. It is based in the  Parzen 
window approach. Our proposal builds a local Gaussian density by selecting inde-
pendently for each training sample the best number of retained dimensions and the 
best estimation of noise variance. This allows our method to represent input distribu-
tions more faithfully than the manifold Parzen window model, which is an improve-
ment of the original Parzen window method. Computational results show the superior 
performance of our method, and its robustness against outliers in the test set. 
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