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Abstract The Degree Constrained Minimum Spanning Tree (DCMST)
on a graph is the problem of generating a minimum spanning tree with
constraints on the number of arcs that can be incident to vertices of the
graph. In this paper, a new neural heuristic for the DCMST problem has
been developed, making use of the multivalued recurrent model MREM,
that has obtained very good results in other combinatorial optimization
problems. The computational performance of our approach is compared
against the performance of some algorithms from specialized literature.
All these approaches are tested using standard problems taken from the
literature.

1 Introduction

Consider an undirected complete graph G = (V , E), where V = {n1, . . . , nN} is
the set of N nodes (or vertices) and E = {e1, . . . , em} is the set of m arcs (or
edges), with given costs cℓ for each ℓ ∈ {1, . . . , m}, and numbers bi ∈ Z

+.
A spanning tree of the connected graph G can be defined as a maximal

subset of E (edges of G) that contains no cycle. Equivalently, a spanning tree is
a minimal set of edges that connect all vertices in the graph.

The degree constrained minimum spanning tree (DCMST) problem on G is
to find a spanning tree T = (V , E ′), with E ′ ⊂ E , such that the expression

C(T ) =
∑

ℓ∈E′

cℓ (1)

is minimum, subject to di ≤ bi for all i ∈ V , where di is the number of arcs
incident at node i, that is, the degree of each node in the tree T is bounded by
a positive constant bi.

⋆ This work has been partially supported by Junta de Andalućıa project number P06-
TIC-01615.



While the unconstrained minimum spanning tree (MST) problem can be
solved easily in polynomial time, the DCMST problem is NP-hard [1]. It is
well-known [2,3] that even approximating optimal DCMST solutions within a
constant factor is NP-hard. Therefore, heuristics are often used to find good
solutions in a reasonable amount of time.

Direct and frequent applications of DCMST problem arise in the design of
telecommunication and energy networks, as well as in the design of networks for
computer communication, transportation, sewage and plumbing.

– The most common example of application is where N terminals (or nodes)
need to be connected by making use of a minimum length of wiring or canals
or pipes. However, the handling capacity of each of the terminals imposes
a constraint on the number of wires (or arcs) that can be connected to any
terminal (see Narula and Ho [4] for additional examples).

– The DCMST is used by Gavish [5] as a subproblem in the design of a cen-
tralized computer network.

– The DCMST may be used in the design of a road system which has to serve
a collection of cities and has an additional restriction that no more than bi

roads may meet at any crossing (node i), see [6].
– It is also possible to impose a degree constraint on nodes in communication

networks, in order to limit the vulnerability of the network in case of node
failure.

Gavish [7] provides other examples of practical instances of the DCMST, and
in [8] several examples of the types of optimisation problems that are faced in
the process of designing computer communication networks are presented.

The rest of this work is organized as follows: In Sec. 2, some previous works
on this problem are highlighted. Sec. 3 is focused in the neural model MREM,
used in this paper, which is formally described. Then, in Sec. 4, the actual
implementation of this model in order to solve DCMST instances is developed.
Results of the experimental simulations are presented in Sec. 5. The last Section,
Sec. 6, is devoted to give some conclusions and to indicate some future research
lines.

2 Previous Works

In [4], Narula and Ho describe two greedy heuristics, and an exact, branch and
bound approach (based on the lagrangean relaxation approach for the TSP that
was employed by Held and Karp [9,10]). Gabow [11] presents an algorithm based
on edge-exchanges on a reduced graph for the DCMST. Gavish [7] derives lower
bounds based on a lagrangean relaxation by making use of a subgradient opti-
mization approach. Savelsbergh and Volgenant [6] develop a branch and bound
method based on a lagrangean relaxation, used in conjunction with a heuristic
approach and an edge elimination idea that was first applied to the Traveling
Salesman Problem (see [12]). Volgenant [13] described a branch and bound pro-
cedure, based on lagrangean relaxation and edge exchanges. Some heuristics,



including a neural network approach, for solving the DCMST, were developed
by Craig, Krishnamoorthy, and Palaniswami [14].

Zhou and Gen [15,16] present an approach to solve DCMSTs using a genetic
algorithm. Their method uses the concept of Prüfer numbers [17]. Unfortuna-
tely their papers do not provide enough detail to completely duplicate their
algorithm, nor are there sufficient computational results to get a good unders-
tanding of the performance of their algorithm.

Boldon, Deo, and Kumar [2] develop four heuristics for solving the DCMST
and implement them on a massively parallel SIMD machine. Deo and Kumar [18]
study 29 constrained spanning trees including the degree constrained spanning
tree and obtain results using a massively parallel computer. Their algorithm
is based on repeatedly solving Minimum Spanning Tree (MST) problems with
increasing penalties for arcs involved in degree violations.

Recently, Sequeiro [19] presented an ant colony model for solving multi-
objective combinatorial optimization problems, whose main application was the
DCMST problem.

3 The Neural Model MREM

It consists in a series of multivalued neurons, where the state of i-th neuron is
characterized by its output (vi), that can take any value in any finite set M.
This set can be a non numerical one, but, in this paper, the neuron outputs only
take value in M ⊂ N.

The state vector V = (v1, v2, . . . , vN ) ∈ MN describes the network state at
any time, where N is the number of neurons in the net. Associated with any
state vector, there is an energy function E : MN → R, defined by the expression:

E(V ) = −
1

2

N
∑

i=1

N
∑

j=1

wi,jf(vi, vj) +

N
∑

i=1

θi(vi) (2)

where W = (wi,j) is the synaptic weight matrix, f : M × M → R is usually
a similarity function since it measures the similarity between the outputs of
neurons i and j. Note that MREM with only two states ({−1, 1} or {0, 1})
and f(x, y) = xy is precisely Hopfield’s (bipolar or binary) model. For each i,
θi : M → R represents the bias or threshold function associated to neuron i.

The purpose of the net is to minimize the energy function described before.
To this end, a random initial state V0 is introduced into the net and at time t,
state vector V (t) will be changed into another state vector V (t + 1) (defined by
the computational dynamics) if E(V (t + 1)) < E(V (t)). If there is not any V

′,
in the neighborhood of V (t), such that E(V ′) < E(V (t)), then the net stops
iterating.

In this case, V (t) is a local minimum of the energy function. Intuitively, the
set of local minima will depend on the dynamics considered for this model.

Several dynamics (both sequential [20] and parallel [21]) are allowed in this
model, due to its generality, although the most adequate dynamics will be de-
termined by the problem to be tackled.



This model has been successfully applied to other combinatorial optimization
problems, see [22,20,23,24,25].

4 Implementation for DCMST Problem

In order to get DCMST problem solved by MREM, a dynamics based on the
edge-exchange technique [13] has been implemented.

Our proposed implementation consists in two MREM networks performing
jointly. One of them, which will be referred to as H1, will be the main network,
trying to solve the problem by means of edge-exchange techniques. The other
network, H2, is an auxiliary network performing in the background the node
clustering needed by H1, as will be made clearer soon.

In order to represent a solution tree, the net H1 will have m neurons, one per
edge of the graph. The output or state of H1 will be a vector V = (v1, . . . , vm) ∈
{0, 1}m, where vj = 1 indicates that j-th edge in the initial graph G is present
in the solution tree T , and vj = 0 otherwise.

For this network H1, only state vectors V representing feasible trees are

allowed, what gives the condition
m

∑

j=1

vj = N − 1.

From a simple identification of the cost function, given by Eq. (1), and the
energy function, given by Eq. (2), the following can be deduced:

– The synaptic weight matrix, W, is equal to 0.
– The similarity function, in this case, is also equal to the zero function in

M×M.
– The threshold function θi : M → R is

θi(v) =

{

ci, if v = 1
0, if v = 0

That is, the energy function only adds the costs or weights corresponding to
edges k such that vk = 1, i.e., edges present in the solution tree.

It must be noted that, in this combinatorial optimization problem, the only
nonzero element in the description of the network is the bias or threshold func-
tions.

First, the net is initialized with a random feasible solution. To this end, the
algorithm presented in Table 1 is used.

Once the feasible initial state V for H1 is obtained, this net iterates in order
to reduce the value of its energy function, which is equivalent to the cost function
given by Eq. (1).

In every iteration, H1 selects (sequentially) two edges (i1 and i2) present
in the tree (that is, vi1 = vi2 = 1), and delete them, by considering V

′, a
modification of the current state V = V (t), such that v′i1 = v′i2 = 0. It must be
noted that the subgraph induced by V

′ has 2 or 3 connected components.
Now, the net H2 performs a node clustering in order to identify the connec-

ted components of the given subgraph. To this end, this net H2 will have N



Table 1. Algorithm to build the initial state V = (v1, . . . , vm) of H1.

1. Select one edge ℓ = (i, j) at random. L = {i, j}. vℓ = 1.
2. Repeat until L = V:

(a) Study the set of candidate edges Ec, connecting nodes
in L to nodes outside L, and not violating the degree
constraint.

(b) If Ec = ∅, select randomly a node i with deg(i) ≥ bi.
Then select an edge ek = (i, j) for some random j, and
make vk = 0.

(c) If Ec 6= ∅, select one edge ek = (ik, jk) ∈ Ec at random.
L = L ∪ {ik, jk}. vk = 1.

neurons, and the output of each neuron, denoted by si ∈ {1, 2, 3}, will indicate
the connected component the i-th node is assigned to.

This enables the first net, H1, to locate new candidate edges, whose end-
points are in different connected components of the considered subgraph, and not
violating the degree constraint. That is, the set of candidates Ec = {ℓ1, . . . , ℓK},
where ℓj is the index of the arc with end-points (xj , yj), which verify sxj

6= syj
,

deg(xj) ≤ bxj
and deg(yj) ≤ byj

, for all j = 1, . . . , K. With this definition of
the set of candidates, we ensure that the output of the net, in each iteration,
represents a feasible tree satisfying all the restrictions.

Then, H1 computes the increment of energy ∆E corresponding to exchange
edges i1, i2 with all possible candidate edges ℓj1 , ℓj2 :

∆E(ℓj1 , ℓj2) = cℓj1
+ cℓj2

− (ci1 + ci2)

It must be noted that the term ci1 + ci2 is constant since edges i1 and i2
are a priori fixed. So, the net actually computes the reduced energy increment,
given by ∆E∗(ℓj1 , ℓj2) = cℓj1

+ cℓj2
.

The scheduling of the network selects a pair of distinct edges ℓj1 , ℓj2 which
minimize the increase of energy:

∆E∗(ℓj1 , ℓj2) = min
j,k:j 6=k

∆E∗(ℓj , ℓk)

Then, the following state V (t + 1) = (v1(t + 1), . . . , vm(t + 1)) of the net is
defined from V

′ as follows:

vj(t + 1) =

{

1, if j = ℓj1 , ℓj2

v′j , otherwise

With this dynamics, the net H1 always decreases its energy value, achieving,
in the limit, a local minimum which represents a spanning tree satisfying all
degree constraints.

An example of the proposed dynamics is represented in Fig. 1.
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Figure 1. Example of the proposed dynamics: (a) original graph, (b) edges i1 and i2
are removed from the tree and ℓ1 and ℓ2 are inserted, without violating any degree
constraint (bi = 3 for all i).

5 Simulation Results

In this Section, we compare the efficiency of our method to some well-known
algorithms designed to solve the DCMST problem.

The test graphs considered in our experiments belong to a family of structu-
red hard graphs which are built by using non-Euclidean distances between nodes.
Following the convention in earlier papers in the literature, all coordinates and
distances are set to integer units. In addition, the bound bi in the degree of each
node has been taken constant for all nodes, bi = b.

SHRD Graphs: The first node is connected to all other nodes by an edge
of length L, the second node is connected to all nodes but the first by an edge
of length 2L and so on. As usual, the value for L is 20.

In all cases, we have made 20 independent executions for each graph size and
value of b.

Our approach has been compared against a series of algorithms, which cons-
titute the state-of-the-art for solving DCMSTs, most of them taken from the
review made in [26], such as:

– Evolutionary Algorithms like F-EA, and P-EA [26], and W-EA [27].
– Problem space search (PSS) [26].
– Simulated Annealing (SA) [26].
– Branch and Bound (B&B) [26].

The main difference between the distinct evolutionary approaches mentioned
above is the encoding used to represent a valid tree. While F-EA and P-EA use
the Prüfer number [17] of the tree to encode the individuals, the W-EA approach
is weight-coded. See their references for more details.

Up to date, the best results were obtained by the weight-coded EA (W-EA).
To compare the relative efficiency of these algorithms, we have used the

d-Prim algorithm [4] as a reference algorithm to compute relative quality im-
provements for the other approaches. This d-Prim algorithm is a variant of the



Table 2. Comparative results of the algorithms mentioned in the text against the
proposed algorithm. Best results per row are indicated in bold.

F-EA P-EA PSS SA B&B W-EA Prop.
Problem N b Avg. Avg. Avg. Avg. Avg. Avg. Avg. t

SHRD150 15 3 13.66 15.07 16.62 14.93 18.03 14.20 20.00 1.03
4 10.83 0.39 12.99 11.61 14.76 11.42 11.11 1.00
5 4.00 -1.07 9.60 9.07 9.60 3.53 6.90 0.88

SHRD200 20 3 11.32 5.38 10.91 10.43 10.91 12.29 23.07 3.17
4 6.82 0.80 7.05 5.57 7.05 8.50 14.06 3.46
5 6.28 1.46 7.30 7.74 7.30 7.96 9.80 3.12

SHRD250 25 3 13.07 13.41 15.40 14.73 15.40 16.51 25.45 7.94
4 4.84 1.59 6.79 5.56 6.79 6.83 16.83 9.12
5 5.37 5.92 6.74 5.19 8.29 9.01 11.39 8.49

SHRD300 30 3 6.51 6.51 11.27 9.53 11.27 12.50 26.40 17.53
4 7.30 3.79 10.58 8.45 10.58 11.76 17.81 19.76
5 2.18 0.19 5.74 2.50 4.74 5.77 12.39 19.20

TOTAL 7.68 4.45 10.00 8.78 10.39 10.02 16.27 7.89

well-known Prim algorithm to compute the minimum spanning tree of a graph,
in which the degree constraint is imposed.

Values appearing in Table 2 are computed as follows:

Cd−Prim − Calg

Cd−Prim

· 100

where Cd−Prim and Calg are the cost of the optimal solutions found by d-Prim
and a given algorithm, respectively. Larger values indicate better results.

It must be noted that our model is able to outperform the other algorithms in
most cases. It obtains much better results on average than the other approaches,
and specially as the number of nodes increases. So, for larger problem instances,
it is expected that our model achieve very good solutions.

In the last column, time values of our model are presented. It can be obser-
ved that our technique is not very time-consuming, being able to solve a large
problem instance (N = 30), in less than 20 seconds.

6 Conclusions and Future Work

In this work we have presented the application of the multivalued neural model
MREM to the solution of the well-known degree-constrained minimum spanning
tree problem.

With the use of two networks from this model, we are able to build a feasible
solution to this problem, satisfying the degree constraints in every iteration, as
well as to compute the connected components of the solution.

By means of computational experiments, our method has proved to outper-
form other algorithms from the literature.



It must be observed that, if a parallel dynamics for this model is used, com-
putational times may be drastically reduced. This will be an issue of study in
future works.

Future research will cover aspects such as to develop a method for solution
improvement, based on stochastic dynamics of the network, or to incorporate
techniques to escape from local minima of the energy function of deterministic
nature.
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