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Abstract. In this paper, the K-pages graph layout problem is solved by a new
neural model. This model consists of two neural networks performing jointly in
order to minimize the same energy function. The neural technique applied to this
problem allows to reduce the energy function by changing outputs from both net-
works —outputs of first network representing location of nodes in the nodes line,
while the outputs of the second one meaning the page where the edges are drawn.

A detailed description of the model is presented, and the technique to mini-
mize an energy function is fully described. It has proved to be a very competitive
and efficient algorithm, in terms of quality of solutions and computational time,
when compared to the state-of-the-art heuristic methods specifically designed for
this problem. Some simulation results are presented in this paper, to show the
comparative efficiency of the methods.

1 Introduction

In the last few years, several graph representation problems have been studied in the
literature. Most of them are related to the linear graph layout problem, in which the
vertices of a graph are placed along a horizontal “node line”, or “spine” (where K half-
planes or pages intersect) and then edges are added to this representation as specified
by the adjacency matrix. The objective of this problem is to minimize the total number
of crossings (adding over all K pages) produced by such a layout.

Some examples of problems associated to this linear graph layout problem (or K
pages crossing number problem) are the bandwidth problem [II], the book thickness
problem [2]], the pagenumber problem [3/4]], the boundary VLSI layout problem [3] and
the single-row routing problem [6]] and automated graph drawing [[7]]. Another important
application is the design of printed circuit boards [8], since, for the case of non-insulated
wires, overlapping wires between electrical components may cause short circuits and
thus may be avoided as much as possible.
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Several authors study a restricted version of this problem in which the vertex order is
predetermined and fixed along the node line, and edges are drawn as arcs in one of the
pages [9]. Other authors are more interested in the variant in which the node order is
not fixed [10]. For this variant, it has been considered necessary to first find an optimal
ordering of the vertices in order to compute the layout.

This problem is NP-hard [I1l12]. So, many researchers have focused on finding ef-
ficient algorithms (some of them specially designed for the case of certain families of
graphs) to solve the graph layout problem.

A comparison of several heuristics for this problem is presented in [9I13]], includ-
ing greedy, maximal planar, one-page, bisection and a neural heuristic, among others.
Concretely, the neural model developed in [[14] (and based on Takefuji and Lee’s work
[15IT6]) was tested and obtained very good results, although authors indicate the possi-
bility of non-convergence of this method. Due to the use of binary neurons, the model
needs 2M neurons to represent the solution for a graph of M edges. In addition, this
model is only intended to solve the 2-pages graph layout problem, and needed to pre-
process the graph in order to obtain a good node ordering.

In this work we present a neural model designed to solve this problem. One of the
differences of our model with the algorithms developed in literature is that there is no
need of assigning a good ordering of the vertices at a preprocessing step. This optimal
node order is computed by the model, as well as the relative position of the arcs.

Our model is a variant of the multivalued MREM model which has obtained very
good results when applied to other combinatorial optimization problems [T7UT8I19120],
guaranteeing the convergence to local minima of the energy function.

2 Formal Description of the Problem

Let G = (V, E) be an undirected graph where V' = {v;} is the set of vertices and
E = (e;,;) is a symmetric binary matrix where e; ; = 1 if edge (v;, v;) exists.

The K-pages book Crossing Number Problem consists in placing graph nodes on
a horizontal “node line” in the plane. Every edge can be drawn as an arc in one of the
half-planes (pages), which intersect that line, see Fig.[Il The objective is to minimize the
number of edge crossings. This problem belongs to the class of NP-hard optimization
problems, even if node order is fixed and the number of pages is K = 2.

An example of linear embedding of the complete graph K in 4 pages, with 0 cross-
ings, is drawn in Fig. [Il In this figure, we can observe the representation of pages 1
and 2 in the left side and pages 3 and 4 in the right hand side. First and third pages are
represented as half-planes above the node line, while the second and fourth pages are
under the node line.

Crossings Detection
Let us consider 4 positions in the node line verifying 1 <i < k < j <1 < N, where 7,
J, k and [ are assigned to nodes v;, vj, vx and v;. Then, edges (v;, v;) and (vk, v;) cross
each other if, and only if, both are represented (drawn) in the same page.

In Fig.2l we can observe that edges (v;, v;) and (v, v;), represented in the node line
and with endpoints ¢ < k < j < [, produce a crossing, whereas if i < j < k < [ they
do not, when both are represented in the same half-plane.
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Page 1 Page 3

Page 2 g Page 4

Fig. 1. Optimal linear layout for K7 in 4 pages

Fig. 2. Crossing condition 1 < k < j <[

It seems reasonable to define V,,, ,, = k to indicate that the edge (v,, vp) Will be
represented in the k-th page or half-plane. If the edge does not exist, we will denote
Viu,v, = 0 for simplicity.

These definitions allow us to define the number of crossings by means of the cost

function:
C= Z Z Z Z 6(‘/1)71,1)ja Vvk,vl)(l - 6(‘/1)71,1)ja 0)) (1)

i k>i >k 1>
where 6(z,y) = 1 if = y, otherwise it equals 0 (Kronecker delta function).
In Eq. (@), the term 6(V, o, , Vi, v, ) expresses that edges (v, v;) and (vg, v;) will be
drawn in the same page, whereas (1 — 6(V, »;,0)) indicates that the edge exists.

3 Previous Heuristics

Cimikowski [OUI3]] presented a comparison of some heuristic approaches to solve the
2-pages graph drawing problem. All of them, except the neural one developed therein,
can be extended to solve the K -pages problem. We make here a brief summary of them:

— Edge-length heuristic (e-len): This heuristic initially orders all edges by their length
(the length of edge (a, b) is |b — a|). Intuitively, longer edges are most likely to pro-
duce a big number of crossings than shorter edges and hence should be embedded
first in the layout. So, each edge is sequentially added to the page of smallest in-
crease in the number of crossings.

— One-page heuristic (1-page): This heuristic initially embeds all edges in the first
page. After this, a “local improvement” phase is carried out, in which each edge is
moved to the page with the smallest number of new crossings. Edges are selected
for movement in order of non-increasing local crossing number, that is, the number
of crossings involving an edge.
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— Greedy heuristic (greedy): In this method, edges are sorted according to the node
index of its ends, that is, first, all edges (1,%) (in increasing order of 4), then (2, 4),
etc. Edges are added, in this order, to the page which results in the smallest increase
in the number of crossings.

4 The Neural Model MREM

It consists in a series of multivalued neurons, where the state of ¢-th neuron is charac-
terized by its output (v;) that can take any value in any finite set M. This set can be a
non numerical one, but, in this paper, the neuron outputs only take value in M C N.

The state vector V' = (v, va,...,vx) € MY describes the network state at any
time, where NN is the number of neurons in the net. Associated with any state vector,
there is an energy function £ : MY — R, defined by the expression:

N

E(V ZZwufvqu Z i(v3) )

21]1 =1

where W = (w; ;) is a matrix, f : M x M — R is usually a similarity function since
it measures the similarity between the outputs of neurons ¢ and j, and §; : M — Ris a
threshold function. At each step, the state vector will be evolving to decrease the value
of the energy function.

The cost function (number of crossings in the graph given by Eq. (I)), must be iden-
tified with the energy function of Eq. 2)). As a result, we obtain w; ; = 1if i < j and 0
otherwise. The similarity function f(v;, v;) and the threshold #; can be expressed as:

'U“ _—2225 Vi,V ’UJ,’U])(]‘_(S(%'L"UICVO))

k I>k

sz,]ZZ(S Vi,V vj,v,)(]-_(s(vtul,'uk;o))

k<ji>k

To solve our problem we have considered two MREM neural networks:

— The first network (the ‘vertices’ net) will be formed by N neurons, being N the
number of nodes in the graph. Neurons output (the state vector) indicate the node
ordering in the line. Thus, v; = k will be interpreted as the k-th node being placed
in the 7-th position in the node line. Hence, the output of each neuron can take value
in the set M1 = {1,2,...N}.

— The second network (the "edges’ net) will be formed by as many neurons as edges in
the graph, M. The output of each neuron will belong to the set Mo ={1,2,..., K}.
As mentioned before, for the arc (v;, v;), Vi, o, = k will indicate that (v;, v;) will
be embedded in the k-th page. For simplicity, let us denote the absence of edge
(’UZ', 'Uj) as V'Ui,'Uj =0.

Initially, the state of the ‘vertices’ net is randomly selected as a permutation of
{1,2,..., N}, and the initial state of the ‘edges’ net is a random element from M3! =
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{1,2,..., K}M. At any time, the net is looking for a better solution than the current
one, in terms of minimizing the energy function.

In this paper, we study the permutation of two nodes and the change in the location
of an edge. These produce the energy increment given in the next subsections. As an ad-
ditional technique for improvement, we have also considered changes in the position of
four edges (‘change-4’), since our studies have demonstrated that this dynamics is able
to undo some crossings which can not be broken just by changing one edge position.

4.1 Permutation of Two Nodes

When two vertices v, and v, permute their order a and b in the node line, we should
take into account that the unique edges changing their position (and therefore changing
the number of crossings) are those that have exactly one endpoint in {v,, vp }.

Let us study the increase in the number of crossings depending on the relative posi-
tions of the endpoints.

Consider a position z in the line and let us see how the number of crossings with
the edge (v.,v,) is modified when it becomes the edge (v., vy) since nodes a and b
permute their positions. Hence, the arc represented with endpoints (z, a) will be drawn,
after the update, with endpoints (x,b), and the unique edges modifying the number
of crossings due to the change must be in the same page and must have an endpoint
v, represented between a and b (a < s < b) and the other, v;, outside that interval
((t < a) or (t > b)). Some cases, depending on the position of z, are considered:

1. Case z < a < s < b: As shown in Fig.[Bl(1),if t < x < a < s < b the number of
crossings is increased in one unit, since the edge (¢1, s) crosses the arc (z,b), but
not (z,a). If < t < a < s < b, a crossing disappears (the arc (2, s) cuts (x, a)
but not (x,b)) and, at last, if v < a < s < b < ¢, the number of crossings will be
increased in 1 unit (analize the arc (s, t3)).

2. Casea < x < b: AsshowninFig.BlQ2),ift <a <z <s<bora<z<s<b<
t, a new crossing is introduced (represented by the cuts of arcs (s2,¢1) and (s2, t2)
with the new edge (z, b)), whereasift < a < s <z <bora <s <z <b<tthe
number of crossings is reduced since crossings of (s1,¢1) and (s1,t2) with (a,x)
disappear.

3. Case a < s < b < x: A crossing is introduced if a < s < b < t < z (arc (s, 12))
and will be erased if t < a < s <b < mx,or,a < s <b<x <t/ (arcs ({1,s) and
(s,3)), as shown in Fig.[3(3).

We must also take into account the change in the number of crossings with edges
(g, vp). Its study is similar to the already made for (v, v,), it suffices to permute the
literals @ and b and to change the sense of the inequalities.

Finally, let us consider changes in the number of crossings produced between edges
(va, vz) and (vp, vy ). All possible changes are shown in Fig. Bl There are different cases:

. Casea<y <z <b:
— Edges (a,z) and (y,b) (Fig. E (1)) are transformed into (z,b) and (y,a)
(Fig.[(2)), vanishing the existing crossing.
- Edges (a,y) and (z,b) (Fig. @ (2)) are transformed into (b,y) and (z,a)
(Fig. [ (1)), causing the apparition of a crossing.
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Fig. 3. Changes in the number of crossings when permuting nodes v, and vy, represented at
positions a and b. An edge represented by the arc (a, x) will be transformed into the arc (b, x).
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Fig. 4. Changes in the number of crossings when permuting nodes v, and v;,. Edges represented
by arcs (a, x) and (y, b) are transformed into arcs (b, x) and (y, a).

2. Casey <a<b<ua:
— When edges (a, x) and (y, b) (Fig.HE(3)) are transformed into (=, b) and (y, a)
(Fig. [ (4)), a new crossing is formed.
— Arcs (a,y) and (z, b) (Fig.[(4)), are transformed into (b, y) and (x, a) (Fig.d
(3)), and a crossing is eliminated.
We can derive an explicit formula for the increase of energy related to all these cases,
just by considering that Eq. (2) (the number of crossings) can be rewritten as:

E=>"Y wi; > win > weidVi, v Vi )1 = 8(Viy, 1,,0))
7 j k l

and by denoting g(x,y, s,t) = 6(Va,s, Vy,t) (1 —6(Vz,s, 0)), then the increase of energy
caused by the permutation of nodes a and b is given by:

AE = Z wa Zw]kzwkl (viy vj, v, vi) — g(vi, V5, vk, V1)

i€{a,b} J
+>0N wz,jzwjkzwkl (01,05, vk, 01) — (V3,05 O, 1)
i j€{a,b}
AN wig Y wik Yy wki (9(vi, vy, vk, 01) — g(0i, v, V7, v1))
i g ke{a,b} l
AN wig Yy wik > wii (g(vi, v, vk, 00) — 903,05, 05,07)) 3
i k 1€{a,b}

where v/, = v, if vs = vp; V) = vy, if V5 = v,; Otherwise v}, = vs.
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4.2 Change of the Position of an Edge

When the edge with endpoints v,, vp is represented in a given page and its location
changes from its current page to the k-th page, an increase (or decrease) of the energy
function (number of crossings) is produced and is given by

AE(k) = (1= 6(Vo, 0,0 Z Z (26(Vu o5 Vo o) — 1) -

a<9<b (t<a)V(t>b)
(1 - 6(Vvs,vm 0)) - max{é( Vs,V an,ﬂ)b)’ 6(Vvs,vm k)} 4)

This expression can be obtained from Eq. (@), by simplifying the difference between
the number of crossings before and after the possible change, since edges (v,, vy,) with
both endpoints located between @ and b in the node line (¢« < = < b, a < y < b), or
both placed outside the interval [a, ], i. e., 2,y & [a, b], do not contribute to modify the
number of crossings with (v,, vy ), which is the changed edge.

In the improvement technique, since four edge positions are to be changed, the proce-
dure to compute the energy increment consists in analysing independently the increase
produced by the assignment of each individual edge to each of the K pages. Then,
it must be taken into account the possible crossings between the selected edges. This
produces a hyper-matrix AE = (AE(k1, ko, k3, k4))ky ko, ks,k, Which represents the
increase of energy the i-th considered edge is moved to the k;-th page.

5 Implementation for K-Pages Book Graph Layout Problem

Several dynamics can be used to solve this problem with our model, but we have chosen
the following one due to its simplicity and efficiency:

1. Initialization: Given a graph with [V nodes and M edges, a random feasible initial
configuration Vg is selected for the location of the nodes. This initial state will be
a permutation of the set of node indices {1,2,..., N}.

For the edges set, the initial state vector W will be a random element of the
set {1,2,..., K}™. As usual, the output V,,, ,. = k means that the arc (i, j) will
be embedded in the k-th page.

2. Two positions a and b in the node line are selected in all possible ways.

Firstly, the net studies the increase of energy when vertices v, and v} are per-
muted by using Eq. (). If the energy is reduced, the net permutes the vertices:
Vo (t + 1) = vp(t), vp(t + 1) = v,(t). Secondly, the net studies to change the
page in which the edge (v,,vp) is located. To this end, the increase of energy
given by Eq. (@) is computed and the change Viowy (t + 1) = ko is done, where
AE(ky) = 1irl1ci<nK AE(k).

3. If all possible combinations of two nodes positions and all possible edge locations
have been considered and no change has been made, both networks have converged
to a local minimum of the energy function (the cost function) and state vectors
represent the obtained solution.

In this case, in order to break some crossings, we apply the additional im-
provement technique ‘change-4’. For each possible combination of 4 edges, the

i5Vj
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net studies the hyper-matrix A E, computes . Igmgl i AE(ky, ko, ks, k4) and the
1,~2,R3,K4
corresponding update is performed.

6 Simulation Results

In this Section we test the performance of our model and compare it with some of
the heuristic methods proposed in for a test set formed by graphs belonging to
well-known graph families. Concretely:

— Complete graphs K,,, where all n nodes are interconnected (no self-connections).

the graph K, has "(";1) edges.

— Circulant graph Cy, (a1, . .., a), where 0 < a1 < ... < ap < ”JQFI is a graph with
n vertices such that vertex 7 is adjacent to vertices i £ a1, . . ., 7 + ax(mod(n)). The
circulant graph Cy, (a1, . .., ax) has n - k edges.

In order to test the efficiency of out method, we use the heuristics given in [9]. Con-
cretely, those named e-len, I-page and greedy, described above. In addition, compara-
tive results of Cimikowski’s neural model (CN) are presented in the case K = 2.

We must note that CN is a neural model which needs the fine-tuning of some pa-
rameters, and our model does not. Also, CN needs of a preprocessing step in which
graph nodes are ordered and then remain fixed along the iterations. Our model is able
to dynamically obtain a very good ordering.

For every graph, 10 independent executions of our model were performed.

For the case of K = 2 pages, results are shown in Table[l It can be observed that,
although CN obtains very good results, our proposal is able to achieve better solu-
tions. Considered heuristics obtain good solutions, but do not perform better than our
proposal.

Table 1. Comparative results of our model for the 2-pages graph problem, for the considered
test graphs. Numbers between parentheses indicate the average number of crossings in all the 10
executions of our model, if this average differs from the minimum obtained.

Graph |V| |E| Prop. CN e-len 1-page greedy
Ke 6 21 3 3 3 4 5
K7 7 28 9 9 11 9 13
Ky 8 36 18 18 18 30 27
Ko 9 45 36 36 42 50 50
Ko 10 55 60 60 80 92 84
C20(1,2) 20 40 038 2 0 0 0
C20(1,2,3) 20 60 19(242) 24 36 438 40
C20(1,2,3,4) 20 80 74(79.3) 74 90 118 108
C22(1,2,3) 22 66 22(269) 26 40 54 44
Ca2(1,3,5,7) 22 88 198(226.5) 200 306 294 286
C4(1,3) 24 48 11(194) 14 22 16 22
Cos(1,3) 26 52 11(188) 16 24 16 24
Cas(1,3,5) 28 84 80(98.0) 86 138 138 130
Cs0(1,3,5) 30 90 92(113) 96 148 150 140
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Table 2. Results for K = 3 and K = 4 pages problems. Numbers between parentheses indicate
the average number of crossings in all the 10 executions of our model, if this average differs from
the minimum obtained.

K =3 K=41
Graph Prop. e-len 1-page greedy Prop. e-len 1-page greedy
Ks 0 1 1 1 0 0 0 0
Ky 2 4 3 4 0 1 1 1
Ky 5 6 8 12 0 4 4 4
Ky 9 15 23 19 3 7 8 8
Kio 20 27 49 40 7 12 22 19
20(1, 0

) 009 0 0 0 0.1 0 0
, 485 2 10 2 0014 1 2 1
4) 21(27.5) 60 71 45 11(153) 6 4

504 5 12 4 037 1 1
,5,7) 96 (106.7) 141 184 166 38(49.4) 85 101 99
) 213) 0 12 0 036 0 0 0
) 577 2 14 2 024 11 1
5)  31(444) 70 71 55 11(208) 29 31 32
,5)  43(536) 59 73 61 19(29.1) 26 30 37

3)
737

3)

5

For larger problem sizes, K = 3 and K = 4, we can observe the same fact as above,
since our proposal outperforms the heuristic methods in most cases. This means that
our method is a significant improvement for this problem, since these heuristics are
well-known to perform very well [13]].

Regarding computational time, it must be noted that, although spending more time in
obtaining a solution, our method is able to achieve good solutions on average, while the
heuristics herein considered always achieve the same solution, no matter the number of
times they are executed.

7 Conclusions and Future Work

In this work we have presented a neural model especially designed to solve some kinds
of combinatorial optimization problems. This model is a variant of the multivalued
model MREM formed by two networks. The dynamics of each of these networks de-
pends on the outputs of the other network, and they are updated alternatively, to reach
an equilibrium state corresponding to a local minimum of the common energy function.

We have tested our model with the well-known K -pages graph linear layout problem
from graph theory. The proposed model avoids some of the drawbacks of other models
in specialized literature, like the absence of convergence guarantees or the fine-tuning
of parameters. In addition, it does not need a pre-processing stage to obtain a good node
ordering, since it can be achieved dynamically.

By using some test instances, we have observed that our model is, at least, compara-
ble to the other models, and it is able to achieve, in many cases, better solutions.
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Future research lines cover aspects such as developing new dynamics for the model

which could help to achieve better results. This model is also applicable when the node
line is not a straight line, it can be a circle, or another geometry.
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