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Abstract. We present a nonparametric probability density estimation model. 
The classical Parzen window approach builds a spherical Gaussian density 
around every input sample. Our method has a first stage where hard 
neighbourhoods are determined for every sample. Then soft clusters are 
considered to merge the information coming from several hard neighbourhoods. 
Our proposal estimates the local principal directions to yield a specific Gaussian 
mixture component for each soft cluster. This leads to outperform other 
proposals where local parameter selection is not allowed and/or there are no 
smoothing strategies, like the manifold Parzen windows. 
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1   Introduction 

The estimation of the unknown probability density function (PDF) of a continuous 
distribution from a set of data points forming a representative sample drawn from the 
underlying density is a problem of fundamental importance to all aspects of machine 
learning and pattern recognition (see [1], [2] and [3]).  

Parametric approaches make assumptions about the unknown distribution. They 
consider, a priori, a particular functional form for the PDF and reduce the problem to 
the estimation of the required functional parameters. On the other hand, 
nonparametric methods make less rigid assumptions. Popular nonparametric methods 
include the histogram, kernel estimation, nearest neighbor methods and restricted 
maximum likelihood methods, as can be found in [4], [5], [6] and [7].   

The kernel density estimator, also commonly referred as the Parzen window 
estimator, [9], places a Gaussian kernel on each data point of the training set. Then, 
the PDF is approximated by summing all the kernels, which are multiplied by a 
normalizing factor. Thus, this model can be viewed as a finite mixture model (see [8]) 
where the number of mixture components will equal the number of points in the data 
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sample. Parzen windows estimates are usually built using a ‘spherical Gaussian’ with 
a single scalar variance parameter 2σ , which spreads the density mass equally along 
all input space directions and gives too much probability to irrelevant regions of space 
and too little along the principal directions of variance of the distribution. This 
drawback is partially solved in Manifold Parzen Windows algorithm [10], where a 
different covariance matrix is calculated for each component. The covariance matrix 
is estimated by considering a hard neighbourhood of each input sample. We propose 
in Section 2 to build soft clusters to share the information among neighbourhoods. 
This leads to filter the input noise by smoothing the estimated parameters. 

We present in section 3 a method that automatizes the selection of the right 
dimensionality of the manifold. The asymptotical convergence of the proposed 
method is formally proven in Section 4. We show some experimental results in 
section 5, where the selection achieved by our method produces more precise 
estimations than the Manifold Parzen Windows and other approaches. Finally, 
Section 6 is devoted to conclusions. 

2   The Smooth Parzen Windows Method 

Let x be an D-dimensional random variable and p() an arbitrary probability density 
function over x which is unknown and we want to estimate. The training set of the 
algorithm is formed by N samples of the random variable. For each training sample xi 
we build a hard Q-neighbourhood Hi with the Q nearest neighbours of xi, including 
itself. Hence Hi is interpreted as a random event which happens iff the input belongs 
to that neighbourhood. The knowledge about the local structure of the distribution 
around xi is obtained when we calculate the mean vector μ and the correlation matrix 
R: 
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Now we present a smoothing procedure to merge the information from different 
hard neighbourhoods. We define a soft cluster i by a random event Si which verifies 
when the input belongs to cluster i. Each hard neighbourhood Hj contributes to Si with 
a weight wij: 

]|[ ijij SHPw =  (3) 
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where the number of soft clusters M may be different from the number of hard 
neighbourhoods N. We can infer the structure of the soft cluster by merging the 
information from the hard neighbourhoods: 
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In order to define a Gaussian distribution we need the estimation of the covariance 
matrix C for each soft cluster: 
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Finally, we need a method to determine the merging weights wij. We propose two 
approaches: 

a) If M=N, we can perform the smoothing by replacing the ‘hard’ model at the data 
sample xi by a weighted average of its neighbours ranked by their distance to xi. Here 
the model at xi has the maximum weight, and their neighbours xj have a weight which 
is a decreasing function of the distance from xi to xj: 
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where ψ is a parameter to control the width of the smoothing. Please note that ωii=1. 
b) We may use the fuzzy c-means algorithm [11] to perform a soft clustering. This 

algorithm partitions the set of training data into M clusters so it minimizes the 
distance within the cluster. The objective function is:  
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where φ is the fuzzy exponent which determines the degree of fuzzyness, and dij is the 
distance between training sample xj and the centroid of cluster i. 

The degrees of membership of training sample j to soft cluster i are obtained as mij, 
which can be regarded as the probability of training sample j belonging to cluster i. In 
this approach the weights wij of the local models that we merge to yield the model of 
cluster i are computed as follows: 
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3   Dynamic Parameter Selection 

Once we have the estimations of the mean vectors μ(Si) and covariance matrices C(Si) 
for each soft cluster Si, it is needed to obtain a Gaussian distribution from them which 
is both accurate and small sized.  

First we incorporate the capacity of estimating the intrinsic dimensionality. A 
second level of automated adaptation to the data will be added by means of a 
parameter γ. This parameter will enable the method to select the right noise level.  

3.1   The Explained Variance Method 

The explained variance method considers a variable number, Ki, of eigenvalues and 
their corresponding eigenvectors to be kept which is computed independently for each 
cluster Si. Through the training process the method ensures that a minimum amount of 
variance is conserved in order to satisfy the level of accuracy, [0,1]α ∈ , chosen by the 
user. 

The lost variance when no directions are kept, V0, can be defined as: 
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with  p
iλ  the p-th eigenvalue of the covariance matrix C(Si), which are supposed to be 

sorted in decreasing order, and D the dimension of the training samples. 
In any other situation the discarded variance, VZ, depends on the number, Z, of 

principal directions conserved: 
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Let V0 – VZ be the amount of error eliminated when we conserve information about 
the Z principal directions. Then 
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Substitution of (12) and (13) into (14) yields 
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By expressing the sum of variances as the trace of C(Si) we can simplify (15): 
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3.2   The Qualitative Parameter γ 

We propose to select the noise variance parameter 2σ  as follows: 

( )2 iK
i iSσ γ λ= ⋅  (17) 

where [0,1]γ ∈  and iK
iλ is the last of the preserved eigenvalues of C(Si), i.e. the 

smallest of the first Ki largest eigenvalues. The estimated noise variance σ2(Si) is 
added to the first Ki largest eigenvalues to yield the estimated variances of the Ki 
principal directions, while the D–Ki trailing directions have estimated variances of 
σ2(Si). 

3.3   Smooth Parzen Windows with Qualitative Parameters 

The proposed algorithm is designed to estimate an unknown density distribution p() 
which the N samples of the training dataset are generated from. The generated 
estimator will be formed by a mixture of M Gaussians, one for each soft cluster: 
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where p
iu is the eigenvector corresponding to the p-th largest eigenvalue of C(Si). 

3.4   Summary 

The training algorithm can be summarized as follows: 

1. For each training sample, compute the mean vector μ(Hi) and correlation 
matrix C(Hi) of its hard neighbourhood Hi with equations (1) and (2). 

2. Estimate the merging weights wij either by the distance method (9) or the 
fuzzy c-means algorithm (11). 
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3. Compute the mean vectors μ(Si) and covariance matrices C(Si) of each soft 
cluster Si following (5) and (7). 

4. Extract the eigenvalues and eigenvectors from C(Si) and estimate the 
dimensionality of the underlying manifold Ki, by means of (16). 

5. Use (17) to calculate σ2(Si), the noise variance for the discarded directions. 
6. Store each local model, i. e., the first Ki eigenvectors and eigenvalues, the 

local noise level σ2(Si) and the mean vector μ(Si). 

4   Convergence Proof 

In this section we prove that our estimator ( )p̂ converges to the true density function 

p() in the limit N→∞ and M→∞. 

Lemma 1. Every local Gaussian Ni(x) tends to the D-dimensional Dirac delta function 
δ(x–μ(Si)) as N→∞ and M→∞. 

Proof. In the limit N→∞ and M→∞ the clusters Si reduce their volume to zero. This 
means that σ2(Si)→0 and p

iλ →0 for all i and p. Hence the Gaussians Ni(x) are 

confined to a shrinking volume centered at μ(Si), because the variances in each 
direction are p

iλ +σ2(Si) or σ2(Si), but they continue to integrate to 1. So, we have that 

Ni(x) → δ(x–μ(Si)).  

Theorem 1. The expected value of the proposed estimation tends to the true 
probability density function as N→∞ and M→∞. 

Proof. The expectation is w.r.t. the underlying distribution of the training samples, 
which is the true probability density function p(): 
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Since Ni(x) are independent and identically distributed random variables we get 
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where Ny() is a Gaussian centered in y. Then, by Lemma 1, if N→∞ and M→∞ then 
Ny() shrinks to a Dirac delta: 

( )[ ] ( ) ( )∫ −→ yyxyx dppE δˆ  (24) 

So, the expectation of the estimation converges to a convolution of the true density 
with the Dirac delta function. Then, 

( )[ ] ( )xx ppE →ˆ  (25) 

Theorem 2. The variance of the proposed estimation tends to zero as N→∞ and 
M→∞. 
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Proof. The variance is w.r.t. the underlying distribution of the training samples, which 
is the true probability density function p(): 
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Since Ni(x) are independent and identically distributed random variables we get 
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By the properties of variance and (23) we obtain 
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By definition of expectation 
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where again Ny() is a Gaussian centered in y. We can bound the integral of the above 
equation with the help of (23), and so we get 
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5   Experimental Results 

This section shows some experiments we have designed in order to study the quality 
of the density estimation achieved by our method. We call it SmoothDist when the 
distance weighting is used, and SmoothFuzzy when we use fuzzy c-means. Vincent 
and Bengio’s method is referred as MParzen, the original Parzen windows method 
(with isotropic Gaussian kernels) is called OParzen, and finally the Mixtures of 
Probabilistic PCA model of Tipping and Bishop [12] is called MPPCA. For this 
purpose the performance measure we have chosen is the average negative log 
likelihood 
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where ˆ ()p  is the estimator, and the test dataset is formed by T samples xi. 

5.1   Experiment on 2D Artificial Data 

A training set of 100 points, a validation set of 100 points and a test set of 10000 
points were generated from the following distribution of two dimensional (x,y) points: 
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0.04 sin( ) , 0.04 cos( )x yx t t y t tε ε= + = +  (32) 

where (3,15), (0,0.01), (0,0.01), ( , )x yt U N N U a bε ε  is uniform in the interval 

(a,b) and ( , )N μ σ  is a normal density. 

We have optimized separately all the parameters of the five competing models with 
disjoint training and validation sets. The performance of the optimized models has 
been computed by 10-fold cross-validation, and the results are shown in Table 1, with 
the best result marked in bold. It can be seen that our models outperform the other 
three in density distribution estimation. 

Table 1. Quantitative results on the espiral dataset (standard deviations in parentheses) 

Method Optimized parameters used ANLL on test set 
SmoothDist M=100, α=0.9, Q=4, γ=0.03, ψ=0.001 –1.5936 (0.2557) 

SmoothFuzzy M=100, α=0.1, Q=4, γ=0.05 –1.6073 (0.3293) 
OParzen M=100, σ 2=0.0001 1.0817 (1.3357) 
MParzen M=100, K=2, Q=4, σ 2=1.6E–5 –0.9505 (0.3301) 
MPPCA M=4, K=1 0.2473 (0.0818) 

 
 

 

 

Fig. 1. Density estimation for the 2D artificial dataset. From left to right and from top to 
bottom: SmoothDist, SmoothFuzzy, OParzen, MParzen and MPPCA. 

Figure 1 shows density distribution plots corresponding to the five models. Darker 
areas represent zones with high density mass and lighter ones indicate the estimator 
has detected a low density area. 

We can see in the plots that our models have less density holes (light areas) and 
less ‘bumpiness’. This means that our model represents more accurately the true 
distribution, which has no holes and is completely smooth. We can see that the 
quantitative ANLL results agree with the plots, because the lowest values of ANLL 
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match the best-looking plots. So, our model outperforms clearly the other three 
considered approaches. 

5.2   Density Estimation Experiment 

A density estimation experiment has been designed, where we have chosen three 
multidimensional datasets from the UCI Repository of Machine Learning Databases 
[13]. As in the previous experiment, we have optimized all the parameters of the five 
competing models with disjoint training and validation sets. The parameters for the 
density estimator of each dataset have been optimized separately. Table 2 shows the 
results of the 10-fold cross-validation, with the winning models in bold. Our two 
proposals show a superior performance. 

Table 2. ANLL on test set (standard deviations in parentheses) 

Dataset SmoothDist SmoothFuzzy OParzen MParzen MPPCA 
auto-mpg 25.4 (0.8) 26.3 (2.4) 29.3 (3.8) 30.1 (3.7) 33.1 (1.7) 

cloud 24.9 (0.7) 24.8 (0.6) 36.9 (3.5) 37.7 (3.5) 31.6 (1.0) 
housing 25.7 (1.2) 24.9 (1.7) 31.2 (2.2) 32.1 (2.2) 43.4 (4.9) 

5.3   Classification Experiment 

We have selected three classification benchmarks from the UCI Repository of 
Machine Learning Databases [13] to perform a classification experiment. We have 
considered Bayesian classifiers which are built by estimating the probability density 
function of each class separately. Then, a test pattern is assigned to the class which 
yields the largest probability density. We have optimized the model parameters 
separately, as in the previous experiment. In this case we have optimized the models 
independently for each class of each database. The results of the 10-fold cross-
validation are shown in Table 3, and the winning model for each database is shown in 
bold. We can see that our two approaches outperform the other three. 

Table 3. Successful classification percentages on test set (standard deviations in parentheses) 

Database SmoothDist SmoothFuzzy OParzen MParzen MPPCA 
glass 69.2 (11.5) 66.7 (8.5) 63.0 (14.6) 64.0 (10.4) 46.4 (11.2) 
liver 67.4 (5.9) 68.8 (7.2) 60.6 (7.9) 62.6 (7.8) 59.2 (10.9) 
pima 69.9 (5.0) 61.6 (5.4) 66.0 (3.9) 62.0 (4.9) 62.9 (5.6) 

6   Conclusions 

We have presented a probability density estimation model. It is based in the Parzen 
window approach. Our proposal builds local models for a hard neighbourhood of each 
training sample. Then soft clusters are obtained by merging these local models. A 
local Gaussian density is developed by selecting independently for each soft cluster 
the best number of retained dimensions and the best estimation of noise variance. This 
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allows our method to represent input distributions more faithfully than the Manifold 
Parzen window model, which is an improvement of the original Parzen window 
method. Computational results show the superior performance of our method. 
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