
J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 707–716, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Soft Clustering for Nonparametric Probability Density
Function Estimation

Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato,
Domingo López-Rodríguez, and María del Carmen Vargas-González

School of Computer Engineering
University of Málaga

Campus de Teatinos, s/n. 29071
Málaga Spain

Phone: (+34) 95 213 71 55
Fax: (+34) 95 213 13 97

{ezeqlr,jmortiz}@lcc.uma.es, dlopez@ctima.uma.es

Abstract. We present a nonparametric probability density estimation model.
The classical Parzen window approach builds a spherical Gaussian density
around every input sample. Our method has a first stage where hard
neighbourhoods are determined for every sample. Then soft clusters are
considered to merge the information coming from several hard neighbourhoods.
Our proposal estimates the local principal directions to yield a specific Gaussian
mixture component for each soft cluster. This leads to outperform other
proposals where local parameter selection is not allowed and/or there are no
smoothing strategies, like the manifold Parzen windows.

Keywords: Probability density estimation, nonparametric modeling, soft
clustering, Parzen windows.

1 Introduction

The estimation of the unknown probability density function (PDF) of a continuous
distribution from a set of data points forming a representative sample drawn from the
underlying density is a problem of fundamental importance to all aspects of machine
learning and pattern recognition (see [1], [2] and [3]).

Parametric approaches make assumptions about the unknown distribution. They
consider, a priori, a particular functional form for the PDF and reduce the problem to
the estimation of the required functional parameters. On the other hand,
nonparametric methods make less rigid assumptions. Popular nonparametric methods
include the histogram, kernel estimation, nearest neighbor methods and restricted
maximum likelihood methods, as can be found in [4], [5], [6] and [7].

The kernel density estimator, also commonly referred as the Parzen window
estimator, [9], places a Gaussian kernel on each data point of the training set. Then,
the PDF is approximated by summing all the kernels, which are multiplied by a
normalizing factor. Thus, this model can be viewed as a finite mixture model (see [8])
where the number of mixture components will equal the number of points in the data

708 E. López-Rubio et al.

sample. Parzen windows estimates are usually built using a ‘spherical Gaussian’ with
a single scalar variance parameter 2σ , which spreads the density mass equally along
all input space directions and gives too much probability to irrelevant regions of space
and too little along the principal directions of variance of the distribution. This
drawback is partially solved in Manifold Parzen Windows algorithm [10], where a
different covariance matrix is calculated for each component. The covariance matrix
is estimated by considering a hard neighbourhood of each input sample. We propose
in Section 2 to build soft clusters to share the information among neighbourhoods.
This leads to filter the input noise by smoothing the estimated parameters.

We present in section 3 a method that automatizes the selection of the right
dimensionality of the manifold. The asymptotical convergence of the proposed
method is formally proven in Section 4. We show some experimental results in
section 5, where the selection achieved by our method produces more precise
estimations than the Manifold Parzen Windows and other approaches. Finally,
Section 6 is devoted to conclusions.

2 The Smooth Parzen Windows Method

Let x be an D-dimensional random variable and p() an arbitrary probability density
function over x which is unknown and we want to estimate. The training set of the
algorithm is formed by N samples of the random variable. For each training sample xi
we build a hard Q-neighbourhood Hi with the Q nearest neighbours of xi, including
itself. Hence Hi is interpreted as a random event which happens iff the input belongs
to that neighbourhood. The knowledge about the local structure of the distribution
around xi is obtained when we calculate the mean vector μ and the correlation matrix
R:

() [] ∑
∈

==
ij H

jii Q
HEH

x

xxμ 1
| (1)

() [] ∑
∈

==
ij H

T
jji

T
i Q

HEH
x

xxxxR
1

|
(2)

Now we present a smoothing procedure to merge the information from different
hard neighbourhoods. We define a soft cluster i by a random event Si which verifies
when the input belongs to cluster i. Each hard neighbourhood Hj contributes to Si with
a weight wij:

]|[ijij SHPw = (3)

So, we have

{ } 1,,...,2,1
1

=∈∀ ∑
=

N

j
ijwMi (4)

 Soft Clustering for Nonparametric Probability Density Function Estimation 709

where the number of soft clusters M may be different from the number of hard
neighbourhoods N. We can infer the structure of the soft cluster by merging the
information from the hard neighbourhoods:

() [] [] [] ()∑∑
=

===
N

j
jij

j
jijii HwHESHPSES

1

||| μxxμ (5)

() [] ()∑∑
=

===
N

j
jij

j
j

T
iji

T
i HwHESHPSES

1

]|[|]|[RxxxxR (6)

In order to define a Gaussian distribution we need the estimation of the covariance
matrix C for each soft cluster:

() ()() ()() () () ()T
iiii

T
iii SSSSSSES μμRμxμxC −=−−=]|[(7)

Finally, we need a method to determine the merging weights wij. We propose two
approaches:

a) If M=N, we can perform the smoothing by replacing the ‘hard’ model at the data
sample xi by a weighted average of its neighbours ranked by their distance to xi. Here
the model at xi has the maximum weight, and their neighbours xj have a weight which
is a decreasing function of the distance from xi to xj:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−=

2

2

exp
ψ

ω ji
ij

xx
 (8)

∑
=

=
N

k
ik

ij
ijw

1

ω

ω

(9)

where ψ is a parameter to control the width of the smoothing. Please note that ωii=1.
b) We may use the fuzzy c-means algorithm [11] to perform a soft clustering. This

algorithm partitions the set of training data into M clusters so it minimizes the
distance within the cluster. The objective function is:

∑∑
= =

=
M

i

N

j
ijij dmJ

1 1

2φ (10)

where φ is the fuzzy exponent which determines the degree of fuzzyness, and dij is the
distance between training sample xj and the centroid of cluster i.

The degrees of membership of training sample j to soft cluster i are obtained as mij,
which can be regarded as the probability of training sample j belonging to cluster i. In
this approach the weights wij of the local models that we merge to yield the model of
cluster i are computed as follows:

710 E. López-Rubio et al.

∑
=

=
N

k
ik

ij
ij

m

m
w

1

(11)

3 Dynamic Parameter Selection

Once we have the estimations of the mean vectors μ(Si) and covariance matrices C(Si)
for each soft cluster Si, it is needed to obtain a Gaussian distribution from them which
is both accurate and small sized.

First we incorporate the capacity of estimating the intrinsic dimensionality. A
second level of automated adaptation to the data will be added by means of a
parameter γ. This parameter will enable the method to select the right noise level.

3.1 The Explained Variance Method

The explained variance method considers a variable number, Ki, of eigenvalues and
their corresponding eigenvectors to be kept which is computed independently for each
cluster Si. Through the training process the method ensures that a minimum amount of
variance is conserved in order to satisfy the level of accuracy, [0,1]α ∈ , chosen by the
user.

The lost variance when no directions are kept, V0, can be defined as:

0
1

D
p

i
p

V λ
=

=∑ (12)

with p
iλ the p-th eigenvalue of the covariance matrix C(Si), which are supposed to be

sorted in decreasing order, and D the dimension of the training samples.
In any other situation the discarded variance, VZ, depends on the number, Z, of

principal directions conserved:

1

D
p

Z i
p Z

V λ
= +

= ∑ (13)

Let V0 – VZ be the amount of error eliminated when we conserve information about
the Z principal directions. Then

{ }{ }0 0min 0,1,..., |i ZK Z D V V Vα= ∈ − ≥ (14)

Substitution of (12) and (13) into (14) yields

{ }
1 1 1

min 0,1,..., |
D D D

p p p
i i i i

p p Z p

K Z D λ λ α λ
= = + =

⎧ ⎫
= ∈ − ≥⎨ ⎬

⎩ ⎭
∑ ∑ ∑ (15)

 Soft Clustering for Nonparametric Probability Density Function Estimation 711

By expressing the sum of variances as the trace of C(Si) we can simplify (15):

{ } ()
1

min 0,1,..., | ()
Z

p
i i i

p

K Z D trace Sλ α
=

⎧ ⎫
= ∈ ≥⎨ ⎬

⎩ ⎭
∑ C (16)

3.2 The Qualitative Parameter γ

We propose to select the noise variance parameter 2σ as follows:

()2 iK
i iSσ γ λ= ⋅ (17)

where [0,1]γ ∈ and iK
iλ is the last of the preserved eigenvalues of C(Si), i.e. the

smallest of the first Ki largest eigenvalues. The estimated noise variance σ2(Si) is
added to the first Ki largest eigenvalues to yield the estimated variances of the Ki
principal directions, while the D–Ki trailing directions have estimated variances of
σ2(Si).

3.3 Smooth Parzen Windows with Qualitative Parameters

The proposed algorithm is designed to estimate an unknown density distribution p()
which the N samples of the training dataset are generated from. The generated
estimator will be formed by a mixture of M Gaussians, one for each soft cluster:

() ()∑
=

=
M

i
iN

M
p

1

1
ˆ xx (18)

() ()⎟
⎠
⎞

⎜
⎝
⎛ +−= iii baN

2

1
expx (19)

() () ()() ()()∑
=

+++−+=
iK

p
i

p
ii

p
iii SSKDDa

1

22 loglog2log σλσλπ (20)

()
()

()
() ()()∑

=

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

iK

p
i

Tp
i

i
p
i

i
i

i S
S

S
S

b
1

2

2

2

2

111 μxuμx
σλσ

 (21)

where p
iu is the eigenvector corresponding to the p-th largest eigenvalue of C(Si).

3.4 Summary

The training algorithm can be summarized as follows:

1. For each training sample, compute the mean vector μ(Hi) and correlation
matrix C(Hi) of its hard neighbourhood Hi with equations (1) and (2).

2. Estimate the merging weights wij either by the distance method (9) or the
fuzzy c-means algorithm (11).

712 E. López-Rubio et al.

3. Compute the mean vectors μ(Si) and covariance matrices C(Si) of each soft
cluster Si following (5) and (7).

4. Extract the eigenvalues and eigenvectors from C(Si) and estimate the
dimensionality of the underlying manifold Ki, by means of (16).

5. Use (17) to calculate σ2(Si), the noise variance for the discarded directions.
6. Store each local model, i. e., the first Ki eigenvectors and eigenvalues, the

local noise level σ2(Si) and the mean vector μ(Si).

4 Convergence Proof

In this section we prove that our estimator ()p̂ converges to the true density function

p() in the limit N→∞ and M→∞.

Lemma 1. Every local Gaussian Ni(x) tends to the D-dimensional Dirac delta function
δ(x–μ(Si)) as N→∞ and M→∞.

Proof. In the limit N→∞ and M→∞ the clusters Si reduce their volume to zero. This
means that σ2(Si)→0 and p

iλ →0 for all i and p. Hence the Gaussians Ni(x) are

confined to a shrinking volume centered at μ(Si), because the variances in each
direction are p

iλ +σ2(Si) or σ2(Si), but they continue to integrate to 1. So, we have that

Ni(x) → δ(x–μ(Si)).

Theorem 1. The expected value of the proposed estimation tends to the true
probability density function as N→∞ and M→∞.

Proof. The expectation is w.r.t. the underlying distribution of the training samples,
which is the true probability density function p():

()[] ()[]∑
=

=
M

i
iNE

M
pE

1

1
ˆ xx (22)

Since Ni(x) are independent and identically distributed random variables we get

()[] ()[] () ()∫== yxyxx y dNpNEpE iˆ (23)

where Ny() is a Gaussian centered in y. Then, by Lemma 1, if N→∞ and M→∞ then
Ny() shrinks to a Dirac delta:

()[] () ()∫ −→ yyxyx dppE δˆ (24)

So, the expectation of the estimation converges to a convolution of the true density
with the Dirac delta function. Then,

()[] ()xx ppE →ˆ (25)

Theorem 2. The variance of the proposed estimation tends to zero as N→∞ and
M→∞.

 Soft Clustering for Nonparametric Probability Density Function Estimation 713

Proof. The variance is w.r.t. the underlying distribution of the training samples, which
is the true probability density function p():

()[] ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

M

i
iN

M
p

1

1
varˆvar xx (26)

Since Ni(x) are independent and identically distributed random variables we get

()[] ()[]xx iN
M

p var
1

ˆvar = (27)

By the properties of variance and (23) we obtain

()[] ()()[] ()[]() ()()[] ()[]()2222 ˆ
11

ˆvar xxxxx pENE
M

NENE
M

p iii −=−= (28)

By definition of expectation

()[] () ()() ()[] ⎟
⎠
⎞⎜

⎝
⎛ −= ∫ 22 ˆ

1
ˆvar xyxyx y pEdNp

M
p (29)

where again Ny() is a Gaussian centered in y. We can bound the integral of the above
equation with the help of (23), and so we get

()[] ()() ()[]
0

ˆ·sup
ˆvar →≤

M

pEN
p

x
x as N→∞ and M→∞ (30)

5 Experimental Results

This section shows some experiments we have designed in order to study the quality
of the density estimation achieved by our method. We call it SmoothDist when the
distance weighting is used, and SmoothFuzzy when we use fuzzy c-means. Vincent
and Bengio’s method is referred as MParzen, the original Parzen windows method
(with isotropic Gaussian kernels) is called OParzen, and finally the Mixtures of
Probabilistic PCA model of Tipping and Bishop [12] is called MPPCA. For this
purpose the performance measure we have chosen is the average negative log
likelihood

1

1
ˆlog ()

T

i
i

ANLL p
T =

= − ∑ x (31)

where ˆ ()p is the estimator, and the test dataset is formed by T samples xi.

5.1 Experiment on 2D Artificial Data

A training set of 100 points, a validation set of 100 points and a test set of 10000
points were generated from the following distribution of two dimensional (x,y) points:

714 E. López-Rubio et al.

0.04 sin() , 0.04 cos()x yx t t y t tε ε= + = + (32)

where (3,15), (0,0.01), (0,0.01), (,)x yt U N N U a bε ε is uniform in the interval

(a,b) and (,)N μ σ is a normal density.

We have optimized separately all the parameters of the five competing models with
disjoint training and validation sets. The performance of the optimized models has
been computed by 10-fold cross-validation, and the results are shown in Table 1, with
the best result marked in bold. It can be seen that our models outperform the other
three in density distribution estimation.

Table 1. Quantitative results on the espiral dataset (standard deviations in parentheses)

Method Optimized parameters used ANLL on test set
SmoothDist M=100, α=0.9, Q=4, γ=0.03, ψ=0.001 –1.5936 (0.2557)

SmoothFuzzy M=100, α=0.1, Q=4, γ=0.05 –1.6073 (0.3293)
OParzen M=100, σ 2=0.0001 1.0817 (1.3357)
MParzen M=100, K=2, Q=4, σ 2=1.6E–5 –0.9505 (0.3301)
MPPCA M=4, K=1 0.2473 (0.0818)

Fig. 1. Density estimation for the 2D artificial dataset. From left to right and from top to
bottom: SmoothDist, SmoothFuzzy, OParzen, MParzen and MPPCA.

Figure 1 shows density distribution plots corresponding to the five models. Darker
areas represent zones with high density mass and lighter ones indicate the estimator
has detected a low density area.

We can see in the plots that our models have less density holes (light areas) and
less ‘bumpiness’. This means that our model represents more accurately the true
distribution, which has no holes and is completely smooth. We can see that the
quantitative ANLL results agree with the plots, because the lowest values of ANLL

 Soft Clustering for Nonparametric Probability Density Function Estimation 715

match the best-looking plots. So, our model outperforms clearly the other three
considered approaches.

5.2 Density Estimation Experiment

A density estimation experiment has been designed, where we have chosen three
multidimensional datasets from the UCI Repository of Machine Learning Databases
[13]. As in the previous experiment, we have optimized all the parameters of the five
competing models with disjoint training and validation sets. The parameters for the
density estimator of each dataset have been optimized separately. Table 2 shows the
results of the 10-fold cross-validation, with the winning models in bold. Our two
proposals show a superior performance.

Table 2. ANLL on test set (standard deviations in parentheses)

Dataset SmoothDist SmoothFuzzy OParzen MParzen MPPCA
auto-mpg 25.4 (0.8) 26.3 (2.4) 29.3 (3.8) 30.1 (3.7) 33.1 (1.7)

cloud 24.9 (0.7) 24.8 (0.6) 36.9 (3.5) 37.7 (3.5) 31.6 (1.0)
housing 25.7 (1.2) 24.9 (1.7) 31.2 (2.2) 32.1 (2.2) 43.4 (4.9)

5.3 Classification Experiment

We have selected three classification benchmarks from the UCI Repository of
Machine Learning Databases [13] to perform a classification experiment. We have
considered Bayesian classifiers which are built by estimating the probability density
function of each class separately. Then, a test pattern is assigned to the class which
yields the largest probability density. We have optimized the model parameters
separately, as in the previous experiment. In this case we have optimized the models
independently for each class of each database. The results of the 10-fold cross-
validation are shown in Table 3, and the winning model for each database is shown in
bold. We can see that our two approaches outperform the other three.

Table 3. Successful classification percentages on test set (standard deviations in parentheses)

Database SmoothDist SmoothFuzzy OParzen MParzen MPPCA
glass 69.2 (11.5) 66.7 (8.5) 63.0 (14.6) 64.0 (10.4) 46.4 (11.2)
liver 67.4 (5.9) 68.8 (7.2) 60.6 (7.9) 62.6 (7.8) 59.2 (10.9)
pima 69.9 (5.0) 61.6 (5.4) 66.0 (3.9) 62.0 (4.9) 62.9 (5.6)

6 Conclusions

We have presented a probability density estimation model. It is based in the Parzen
window approach. Our proposal builds local models for a hard neighbourhood of each
training sample. Then soft clusters are obtained by merging these local models. A
local Gaussian density is developed by selecting independently for each soft cluster
the best number of retained dimensions and the best estimation of noise variance. This

716 E. López-Rubio et al.

allows our method to represent input distributions more faithfully than the Manifold
Parzen window model, which is an improvement of the original Parzen window
method. Computational results show the superior performance of our method.

Acknowledgements

This work was partially supported by the Ministry of Education and Science of Spain
under Projects TIN2005-02984 and TIN2006-07362.

References

1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

2. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York (1986)

3. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
4. Izenman, A.J.: Recent developments in nonparametric density estimation. Journal of the

American Statistical Association 86(413), 205–224 (1991)
5. Lejeune, M., Sarda, P.: Smooth estimators of distribution and density functions.

Computational Statistics & Data Analysis 14, 457–471 (1992)
6. Hjort, N.L., Jones, M.C.: Locally Parametric Nonparametric Density Estimation. Annals of

Statistics 24(4), 1619–1647 (1996)
7. Hastie, T., Loader, C.: Local regression: Automatic kernel carpentry. Statistical Science 8,

120–143 (1993)
8. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Chichester (2000)
9. Parzen, E.: On the Estimation of a Probability Density Function and Mode. Annals of

Mathematical Statistics 33, 1065–1076 (1962)
10. Vincent, P., Bengio, Y.: Manifold Parzen Windows. Advances in Neural Information

Processing Systems 15, 825–832 (2003)
11. Bezdek, J.C.: Numerical taxonomy with fuzzysets. J. Math. Biol. 1, 57–71 (1974)
12. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Components Analyzers.

Neural Computation 11, 443–482 (1999)
13. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning

databases. University of California, Department of Information and Computer Science,
Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

	Soft Clustering for Nonparametric Probability Density Function Estimation
	Introduction
	The Smooth Parzen Windows Method
	Dynamic Parameter Selection
	The Explained Variance Method
	The Qualitative Parameter $gamma$
	Smooth Parzen Windows with Qualitative Parameters
	Summary

	Convergence Proof
	Experimental Results
	Experiment on 2D Artificial Data
	Density Estimation Experiment
	Classification Experiment

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

