
A Study into the Improvement of Binary
Hopfield Networks for Map Coloring
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Abstract. The map-coloring problem is a well known combinatorial
optimization problem which frequently appears in mathematics, graph
theory and artificial intelligence. This paper presents a study into the
performance of some binary Hopfield networks with discrete dynamics
for this classic problem. A number of instances have been simulated
to demonstrate that only the proposed binary model provides optimal
solutions. In addition, for large-scale maps an algorithm is presented to
improve the local minima of the network by solving gradually growing
submaps of the considered map. Simulation results for several n-region
4-color maps showed that the proposed neural algorithm converged to
a correct colouring from at least 90% of initial states without the fine-
tuning of parameters required in another Hopfield models.

1 Introduction

The k-coloring problem is a classic NP-complete optimization problem. The four
color theorem states that any map drawn on a plane or sphere can be colored
with four colors so that no two areas which share a border have the same color.
The proof of this conjecture took more than one hundred years [1]. In 1976,
Appel and Haken provided a computer-aided proof of the four-color theorem [2].

A powerful neural network for solving the map-coloring problem was presented
by Takefuji and Lee [3]. The capability of the neural algorithm was demonstrated
by solving examples of Appel and Haken’s experiments through a large number
of simulation runs. Remarkable solutions for many other combinatorial opti-
mization problems have been presented by applying Takefuji and Lee’s model,
showing that it performs better than the best known algorithms [4,5,6]. Takefuji
and Lee found discrete neurons computationally more efficient than continuous
neurons [3]. Hence, they usually apply the continuous dynamics of the analog
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Hopfield model with binary neurons. However, it has been recently demonstrated
that this model does not always guarantee the descent of the energy function
and can lead to inaccurate results and oscillatory behaviors in the convergence
process [7,8,9,10].

In contrast, recently we have presented two binary Hopfield networks with
discrete dynamics that always guarantee and maximize the decrease of the en-
ergy function. In the first one [11], a new input-output function is introduced
into the binary Hopfield model with an asynchronous activation dynamics. Sim-
ulation results show that this sequential network converges to global optimal
solutions for the n-queens problem [11]. However, since the operation of this
model is based on the notion of single update, the required number of iteration
steps for convergence is increased in proportion to the size of the problem. It
led us to design a new binary neural network, the optimal competitive Hop-
field model (OCHOM), based on the notion of group update [7]. It has been
observed that the computation time is decreased even 100 times for large-scale
networks comparing to the sequential model presented in [11]. In addition, per-
formance comparison trough massive simulation runs showed that for some prob-
lems the OCHOM is much superior to Takefuji and Lee’s model in terms of both
the solution quality and the computation time [7,8].

Recently, Wang and Tang [12] have improved the OCHOM by incorporating
stochastic hill-climbing dynamics into the network. Simulation runs show that
for some problems this algorithm obtains better solutions than the OCHOM,
though the computation time is increased.

In this paper we study the performance of the binary neural networks through
the four-color map problem. Despite the remarkable solutions obtained for some
combinatorial optimization problems, simulation results show that the OCHOM
network does not provide a global minimum solution for the map-coloring
problem. Note that Joya et al. [13] proved that the Hopfield model with dis-
crete dynamics never reached a correct solution for the k-colorability problem,
while continuous dynamics succeeded to obtain a correct colouring. However, as
pointed in [13], one mayor problem with the continuous model is that there is
no analytical method to obtain the parameters of the network.

The mayor advantage of the OCHOM is that the search space is greatly
reduced without a burden on the parameter tuning. However, it becomes a dis-
advantage for the map-coloring problem, where reducing the magnitude of the
search space can easily bring on the problem of the local minimum convergence.
It leads us to apply the sequential binary Hopfield model where more states of
the network are allowed since every neuron can be activated on every step.

We have applied the binary sequential Hopfield model with the discrete input-
output functions proposed by other authors [15,16]. It is confirmed by computer
simulations that these networks never succeed to obtain a correct colouring.
However, applying our discrete function [11] the sequential Hopfield network is
capable of generating exact solutions for the four-color problem. On the other
hand, simulation runs for large-scale maps show that the percentage of random
initial states that do not converge to a global minimum is considerably increased.
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Even for Hopfield networks with continuous dynamics it has been reported that
with extremely large maps it is necessary to dynamically adjust the parameters
so as to avoid local minima [14], where no method is given for this task.

We have modified the binary sequential network applying a hill-climbing term.
However, we have found that this technique do not guarantee global minimum
convergence for large-scale maps if the initial state is not a “correct” one. Hence,
we have developed a method to avoid this difficulty without the fine-tuning of
parameters required in another Hopfield models. The proposed algorithm solves
a growing submap with the sequential network and uses as the initial state this
optimal solution instead of a random binary state. Simulation runs in up to
the 430-country map taken from the example of Appel and Haken’s experiment
illustrate the effectivity and practicality of this neural approach.

2 Network Architecture

Let H be a binary neural network (1/0) with N neurons, where each neuron
is connected to all the other neurons. The state of neuron i is denoted by vi

and its bias by θi, for i = 1, . . . , N ; ωij is a real number that represents the
interconnection strength between neurons i and j, for i, j = 1, . . . , N . Note that
we do not assume that self-connections ωii = 0 , as in the traditional discrete
Hopfield model. Considering discrete-time dynamics, the Liapunov function of
the neural network is given by:

E(k) = −1
2

N∑

i=1

N∑

j=1

wijvi(k)vj(k) +
N∑

i=1

θivi(k) (1)

where k denotes discrete time. The inputs of the neurons are computed by the
Hopfield’s updating rule: ui(k) =

∑N
j=1 ωijvj(k) − θi. We assume now that the

network is updated asynchronously, that is, only one neuron i is selected for
updating at time k. Hence, we have a sequential model where Δvi �= 0, Δvj = 0,
j = 1 . . . n, j �= i, and the energy change is:

ΔE(k) = E(k + 1) − E(k) = −Δvi(k)[ui(k) +
ωii

2
Δvi(k)] (2)

Since we have binary outputs vi ∈ {0, 1}, it follows from (2) that:

– For Δvi = 1, ΔE(k) ≤ 0 if and only if ui(k) ≥ −ωii

2
– For Δvi = −1, ΔE(k) ≤ 0 if and only if ui(k) ≤ ωii

2

From these conditions we get that the energy is guaranteed to decrease if and
only if the input-output function is:

vi(k + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if vi(k) = 0 and ui(k) ≥ −ωii

2
0 if vi(k) = 0 and ui(k) < −ωii

2
0 if vi(k) = 1 and ui(k) ≤ ωii

2
1 if vi(k) = 1 and ui(k) > ωii

2

(3)
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For ωii ≥ 0 the above expression reduces to:

vi(k + 1) =

⎧
⎨

⎩

1 if ui(k) > |ωii

2 |
0 if ui(k) < −|ωii

2 |
change if −|ωii

2 | ≤ ui(k) ≤ |ωii

2 |

and for ωii < 0 becomes to:

vi(k + 1) =

⎧
⎨

⎩

1 if ui(k) ≥ |ωii

2 |
0 if ui(k) ≤ −|ωii

2 |
no change if −|ωii

2 | < ui(k) < |ωii

2 |
(4)

Sun [15] proposed a generalized updating rule (GUR) for the binary Hopfield
model updated in any sequence of updating modes. In the case of sequential
mode this generalized updating rule is equivalent to the function proposed by
Peng et al. in [16] and very similar to (4). Since these functions are only valid
when ωii < 0, it shows that (3) is not an instance of them.

Observe that the function presented in [15,16] only differs from (4) in the
case that ui(k) = |ωii

2 | and vi(k) = 0 and in the case of ui(k) = −|ωii

2 | and
vi(k) = 1. In these cases we have ΔE = 0 if we change the state of the neuron.
Simulation runs in the four-coloring problem, a problem with ωii < 0, show
that only if we allow the network to evolve to another states with the same
energy it is possible to reach the global minimum. For this reason our function
(4) enables the network to generate a correct colouring. However, applying the
function proposed in [15,16] the network is always trapped in unacceptable local
minima.

3 The Proposed Algorithm for the Map-Coloring
Problem

The neural network is composed of N×K binary neurons, where N is the number
of areas to be colored and K is the number of colors available for use in coloring
the map. The binary output of the ikth neuron vik = 1 means that color k is
assigned to area i, and vik = 0 otherwise. Hence, the energy function is defined:

E = B

N∑

i=1

(
K∑

k=1

vik − 1)2 +
N∑

i=1

N∑

j = 1
j �= i

K∑

k=1

aijvikvjk (5)

where B > 0 is a constant which specifies the relative weighting of the first term
and A = [aij ] is the adjacency matrix which gives the boundary information
between areas, that is, aij = 1 if areas i and j have a common boundary, and
aij = 0 otherwise (see fig. 1). The first term in the energy function (5) becomes
zero if one and only one neuron in each row has 1 as the output, and so a unique
color is assigned to each area of the map. The second term vanishes when all
neighboring areas do not have the same color. By comparing the energy function
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Fig. 1. The U.S. continental map and its adjacency matrix given by a 48 × 48 array.
Black and white squares represent 1 and 0 values, respectively.

defined (5) and the Hopfield energy function (1), the connections weights and the
biases are derived. If we substitute them in the Hopfield’s updating rule then:

uik = −θik +
N∑

j=1

K∑

s=1

ωik,jsvjs = 2B − 2B

K∑

s=1

vis − 2
N∑

j = 1
j �= i

aijvjk (6)

Observe that the neural self-connection is ωik,ik = −2B for all the neurons
and then, according to (2), the energy change on every step is:

ΔE = −uikΔvik + B(Δvik)2 (7)

Simulation runs show that for medium-sized maps the proposed binary sequen-
tial model obtains a correct colouring from randomly generated initial states.
However, for large-scale maps it is usually necessary a mechanism for improving
local minima. The proposed neural algorithm is based upon the observed fact
that the network can find more easily an exact solution for a given map using
as the initial state an optimal solution of a submap of it, rather than using as
the initial state a random binary matrix V .

In our algorithm on step n the neural network colors a map with n regions,
using n×K binary neurons and considering the adjacency matrix n×n. On step
n + 1, one region is added to the map and the network solves the (n + 1)-map
using (n + 1) × K binary neurons and considering the correct adjacency matrix
(n + 1) × (n + 1). The algorithm introduces the optimal solution for the n-map
problem obtained on step n as the initial state for the (n + 1)−map problem by
completing with a 1 × K random binary vector the row n + 1. This does not
mean that the optimal solution that we obtain on step n+1 must always include
the solution obtained on step n, since the network can evolve to a different state.
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Note also that the size of the network is modified with time and automatically
adjusted to the size of the considered map.

Observe that in the algorithm NImax denotes the maximum number of it-
eration steps for the time out procedure for solving the n-map. It means that
if the network is trapped in a local minimum for the map with n regions, the
algorithm automatically forces the network to solve the map with n +1 regions,
and so on. For the 4-color problem, the network with n × 4 neurons is extended
to a network with (n+1)×4 neurons, and so there is an increment of the energy
function. Then, since the energy and the number of neurons are increased, there
are more possible states with less or equal energy for the network to evolve in
order to escape from local minima. The following procedure describes the algo-
rithm proposed for solving the N -map K-coloring problem, in which we start
with n = 1 or n = α ≤ N , where α is the number of regions in a solved submap:

1. Initialize the values of all the neuron outputs vik, for i = 1 to n and k = 1
to K, by randomly choosing 0 or 1.

2. Solve the n-map K-coloring problem:
(a) Extract from A (N × N) the adjacency matrix An(n × n) for the n-map

problem and set the number of iteration steps NI = 0.
(b) Evaluate the initial value of the energy function (5).
(c) Select randomly a neuron ik.
(d) Compute uik, the input of neuron ik, by eq. (6).
(e) Update the neuron output vik by the input-output function (4).
(f) Compute the energy change by eq. (7) and the new value of E.
(g) Increment the number of iteration steps by NI = NI + 1.
(h) Repeat from step 2.c until E = 0 or NI = NImax.

3. If n = N then terminate this procedure, else go to step 4.
4. Add a (1×K) random binary row vector to the optimal matrix V = [vik]n×K

obtained in 2.
5. Increment n by n = n + 1 and go to 2.

Observe that, if the network is still trapped in a local minimum when we reach
n = N , that is, the full number of regions of the map, we can add imaginary
regions to the real map until the network reaches the global minimum.

4 Simulation Results

We have tested the different binary Hopfield networks on the n-region 4-color
maps solved by Takefuji and Lee in [3], that is, the U.S. continental map which
consists of 48 states (see fig. 1) and the maps taken from the experiments of
Appel and Haken [2]. Computational experiments were performed on an Origin
2000 Computer (Silicon Graphics Inc.) with 4 GBytes RAM by Matlab. For every
map and network, we carried out 100 simulation runs from different randomly
generated initial states. Simulation results showed that the OCHOM network
[7,8] never reached a correct solution. Also, the binary model proposed in [15,16]
was always trapped in unacceptable local minima for all the considered maps.
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Initially, we have applied the proposed sequential model without the algorithm
that solves gradually growing submaps. To prevent the network to assign no
color to areas with a large number of neighbors, we strengthen the first term
of the energy function by taking the constant value of the coefficient B = 2.
Simulation runs for the U.S. map showed that the network converged to exact
solutions, as the ones represented in fig. 2, from 95% of the random initial states.
Then, we have found a few initial states from which the network is trapped
in local minima. We have modified the network applying to our model a hill-
climbing term. However, simulation runs in all the considered maps show that
this technique does not either guarantee global minimum convergence.

Fig. 2. Three different solutions [V ]48×4 of the 48-state U.S. map 4-color problem pro-
vided by the sequential network. Black and white rectangles indicate 1 and 0 outputs,
respectively, where the output vik = 1 means that color k is assigned to state i.

We consider now a 210-country map taken from Appel and Haken’s exper-
iments and extract arbitrary submaps of 50, 70, 100 and 150 countries, where
each one includes the one before. For the 50-map the network converged to an
exact solution from 94 % of the random initial states, and for the 70-map from
92% of the random initial states. When we consider the maps with 100, 150 and
210 countries it is confirmed that for these similarly difficult maps the percent-
age of random initial states that converges to a correct colouring decreases with
the size of the map. Therefore, for the 430-country map taken from Appel and
Haken’s experiments it is a rather difficult task finding randomly an initial state
from which the network reaches a global minimum. Hence, it becomes necessary
for extremely large maps to complete the network with the proposed algorithm
to find adequate initial states from submaps.

When we applied the complete algorithm described in Sect. 3 with n = 1, the
sequential model converged to an exact solution for the U.S. map from 100%
of the initial states for a total of 100 runs. Also, for the 210-map of Appel and
Haken the percentage of network simulations that produced a correct coloring
was 100%. Observe that the network gradually colors all the extracted submaps,
in this case 209 maps. Finally, when we apply this algorithm to the 430−map of
Appel and Haken, 90 % of the network simulations provided a correct coloring
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for a total of 100 runs. This percentage can be increased if we add imaginary
regions to the real map as described in Sect. 3.

5 Conclusions

A study into the performance of different binary Hopfield networks through the
four-coloring problem has been presented. Simulation results show that both
the optimal competitive Hopfield model [7,8] and the sequential Hopfield model
presented in [15,16] never reached a correct colouring. However, the proposed
binary sequential Hopfield model is capable of generating exact solutions for
medium-sized maps. Nevertheless, simulation results also show that the percent-
age of random initial states that converges to a correct colouring decreases with
the size of the map when we consider similarly difficult maps. Hence, a neural
algorithm is presented for large-scale maps to help the sequential model to find
adequate initial states by solving submaps of the considered map. A number of
instances have been simulated showing that this network provides an efficient
and practical approach to solve the four-coloring problem even for large-scale
maps without a burden on the parameter tuning.

References

1. Saaty,T., Hainen, P.: The four color theorem: Assault and Conquest. Mc Graw-Hill
(1977).

2. Appel, K., Haken, W.: The solution of the four-color-map problem, Scientific Amer-
ican, Oct. (1977) 108-121.

3. Takefuji, Y., Lee, K. C.: Artificial neural networks for four-colouring map problems
and K-colorability problems. IEEE Trans. Circuits Syst. 38 (1991) 326-333.

4. Funabiki, N., Takenaka, Y., Nishikawa, S.: A maximum neural network approach
for N-queens problem. Biol. Cybern. 76 (1997) 251-255.

5. Funabiki, N., Takefuji, Y., Lee, K. C.: A Neural Network Model for Finding a Near-
Maximum Clique. J. of Parallel and Distributed Computing 14 (1992) 340-344.

6. Lee, K. C., Funabiki, N., Takefuji, Y.: A Parallel Improvement Algorithm for the
Bipartite Subgraph Problem. IEEE Trans. Neural Networks 3 (1992) 139-145.
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