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Abstract. In this work, a general framework for developing learning
rules with an added term (perturbation term) is presented. Many learn-
ing rules commonly cited in the specialized literature can be derived from
this general framework. This framework allows us to introduce some
knowledge about vector quantization (as an optimization problem) in
the distortion function in order to derive a new learning rule that uses
that information to avoid certain local minima of the distortion function,
leading to better performance than classical models. Computational ex-
periments in image compression show that our proposed rule, derived
from this general framework, can achieve better results than simple com-
petitive learning and other models, with codebooks of less distortion.

1 Introduction

Vector quantization (VQ) is a coding method designed to represent a multidi-
mensional space by means of a finite number of vectors, called representatives
or prototypes. A vector quantizer maps each input vector in the p-dimensional
Euclidean space R

p into one of the K prototypes. The construction of a vec-
tor quantizer can be modelled as an optimization problem in which a distortion
function is minimized. If the set of input vectors is finite, X = {x1, . . . , xN},
and the set of K prototypes (the codebook) is given by {w1, . . . , wK}, an usual
measure of the distortion introduced in the coding process is given by:

F (W ) =
1
N

N∑

i=1

min
j=1,...,K

||xi − wj ||2 (1)

where the matrix W = (w1, . . . , wK) can also be considered as a vector with
Kp components.
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Among the most popular applications of VQ one can find image and speech
signals compression. VQ can also be considered as an approach to data clustering
by means of combinatorial optimization techniques which divide the data into
clusters according to a suitable cost (or distortion) function, like the one given
in (1).

According to Shannon’s rate distortion theory, VQ can always achieve better
compression performance than any conventional coding technique based on the
encoding of scalar quantities [1].

In its beginnings, the high amount of computation required by existing en-
coding techniques did not allow the use of VQ techniques. Linde, Buzo and Gray
[2] proposed the well-known LBG algorithm for VQ which made no use of dif-
ferentiation, and it is the standard approach to compute the codebook. While
the LBG algorithm converges to a local minimum, it is not guaranteed to reach
the global minimum.

Competitive neural networks are designed to cluster the input data. Thus, by
using VQ techniques in this type of networks, tasks such as data coding and com-
pression can be performed. This fact explains that the competitive learning is an
appropriate algorithm for VQ of unlabelled data. A multitude of VQ techniques
were developed in conjunction with competitive networks: Ahalt, Krishnamurthy
and Chen [3] developed a training algorithm for designing VQ codebooks with
near-optimal results, that can be used to develop adaptive vector quantizers.
Yair, Zeger and Gersho [4] proved certain convergence properties of the Koho-
nen algorithm for VQ design, and also introduced the so-called soft competition
scheme, which updates all the codevectors simultaneously with a step size that is
proportional to its probability of winning. Pal, Bezdek and Tsao [5] proposed a
generalization of learning VQ for clustering which avoids the necessity of defining
an update neighbourhood scheme and the final centroids do not seem sensitive
to initialization. The rival penalized competitive learning was introduced by
Xu, Krzyzak and Oja [6]. In this new algorithm for each input not only the
winner unit is modified to adapt itself to the input, but also its rival unlearns
with a smaller learning rate. Ueda and Nakano [7] presented a new competi-
tive learning algorithm with a selection mechanism based on the equidistortion
principle for designing optimal vector quantizers. The selection mechanism en-
ables the system to escape from local minima. Uchiyama and Arbib [8] showed
the relationship between clustering and VQ and presented a competitive learn-
ing algorithm which generates units where the density of input vectors is high
and showed its efficiency in color image segmentation based on the least sum
of squares criterion. Mao and Jain [9] have proposed a self-organizing network
for hyperellipsoidal clustering that is applied to texture segmentation problems.
More recently, Gómez-Ruiz and Muñoz-Pérez [10,11] presented two new learning
rules based on the principle of maximizing the distance between codevectors, in-
troducing the concept of expansive and competitive learning achieving very good
results.

We propose a new heuristic strategy to develop learning rules for competi-
tive networks whose main contribution is the inclusion of an additional term in
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the distortion function allowing to escape from local minima when suitably de-
fined. New learning rules can be derived from this generalized distortion function
and used as weight update schemes for the network, as proved in the following
sections.

2 Construction of Learning Rules with Additional Terms

In this section we will suppose that the set of possible solutions W = (w1, . . . ,
wK) to VQ is bounded (||W || ≤ M < ∞).

We will also consider a sequence of distortion functions {Fn} obtained as small
perturbations of the original F . The perturbation term decreases as n tends to
∞ and helps the learning process (optimization of the distortion function) to
avoid certain local minima, that is, non-global solutions.

The analytic expression for the family of functions Fn considered in this work
is:

Fn(W ) =
1
N

N∑

i=1

(
min

j=1,...,K
||xi − wj ||2 + αn · g(xi, X, W )

)
(2)

where g(xi, X, ·) is a differentiable and bounded function (for every i), that is,
there exists a number M ′ such that ||g(xi, X, ·)||∞ ≤ M ′ < ∞ and {αn} is a
sequence of real numbers converging to 0. This perturbation function g brings all
information necessary to avoid local minima, and corresponds to the additional
term in the learning rule, as we will see next.

This sequence satisfies one convergence condition (condition of uniform con-
vergence): lim

n→∞Fn(W ) = F (W ) for all W ∈ V , where V is a compact (closed

and bounded) subset of R
Kp defined as follows:

V = {W = (w1, . . . , wK) = (w11, w12, . . . , w1p, . . . , wKp) ∈ R
Kp : ||W || ≤ M}

This convergence result ensures that the sequence {Fn} of “perturbed” distor-
tion functions converges to the original F . This fact implies that the learning rule
associated to F can be approximated by the ones associated to the successive
Fn, as long as limn→∞ αn = 0.

To obtain learning rules from the definition of Fn, the stochastic gradient
method will be used. This method can be described as follows:

– Consider a random i ∈ {1, . . . , N} and define:

Ti(W ) = min
j=1,...,K

||xi − wj ||2 + αn · g(xi, X, W )

– The weight update rule is Δwj = −λ ∂Ti

∂wj
=

=

⎧
⎨

⎩
λ(xi − wj) − λαn

∂g(xi,X,W )
∂wj

if wj = arg minj=1,...,K ||xi − wj ||2

−λαn
∂g(xi,X,W )

∂wj
if wj �= arg minj=1,...,K ||xi − wj ||2
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that is, the winning neuron updates its weight w = wj accordingly to the for-
mula λ(xi −w)−λαn

∂g(xi,X,W )
∂w , that includes the original competitive learning

scheme (xi−w) plus a perturbation term. For a non-winning neuron, the update
is only caused by the perturbation in the distortion function.

The addition of this perturbation term provides a way to include more infor-
mation in the learning process, as well as a generalization of the usual updating
schemes.

By giving different values of the perturbation function g, we can obtain learn-
ing rules already known:

1. By defining g ≡ 0 (no perturbation), we obtain the classical learning rule:

Δwj =
{

λ(xi − wj) if wj = w
0 if wj �= w

(3)

2. If we define g(xi, X, W ) = −||w − x̄||2, where w represents the winning
prototype when the input to the net is xi, that is,

||xi − w||2 = min
j=1,...,K

||xi − wj ||2 ,

we arrive at

Fn(W ) =
1
N

N∑

i=1

(
||xi − w||2 − αn · ||w − x̄||2

)
.

With this definition, we are trying to minimize the usual distortion ||xi−w||2
and, at the same time, maximize (note the change of sign) the distance from
this prototype to the data centroid, ||w − x̄||2.

As explained before, we can derive a learning rule given by the expression

Δwj =
{

λ · (xi − w) − λ · αn(x̄ − w) if w = wj

0 otherwise (4)

By naming βn = λ · αn, the learning rule described in [10] is obtained.
3. The updating scheme from [11] can be obtained by defining the perturbation

term g(xi, X, W ) =< x̄, w > where, as usual, w is the winning prototype
and < ·, · > is the Euclidean inner product. The associated learning rule is
derived:

Δwj =
{

λ · (xi − w) − λ · αnx̄ if w = wj

0 otherwise (5)

To get the same analytic expression as in [11], it suffices to define βn such
that (1 − λ)βn = λαn and substitute in the last expression.

The aim of this rule is to minimize the inner product < x̄, w >, which is
achieved when vectors x̄ and w are in opposite directions, that is w ∝ −x̄.

By defining in an adequate way the perturbation term g, we can obtain mul-
tiple learning rules, including most of the mentioned in specialized literature,
for example [6] and others. These rules are derived from an optimization prob-
lem, where the perturbation term helps to avoid local minima of the original
distortion function.
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3 A New Learning Rule

As mentioned in [10,11], a pair of necessary and sufficient conditions to ensure
that the optimum of F is global are:

– Prototypes (that is, w1, . . . , wK) must be as far away as possible from the
centroid of data, that is, the quantity

K∑

j=1

nj ||wj − x̄||2 (6)

where nj is the number of data whose associated prototype is wj , must be
maximized.

– At the same time, prototypes must be the centroids of the set of input
patterns represented by them, that is, if

Sj = {x ∈ X : ||x − wj ||2 = min
l=1,...,K

||x − wl||2}

then it must be satisfied wj =
1

|Sj |
∑

x∈Sj

x.

Our approach is based on these two conditions. The learning rule developed
in this paper will try to maximize the value of (6), but in an indirect way.

The two references mentioned earlier [10,11] presented learning rules based
on maximize that quantity directly.

We consider an alternative way of maximizing the distance from the proto-
types to the data centroid that consists in maximizing the distance from the
prototypes to the prototypes centroid and in minimizing the distance between
both centroids:

maximize ||w − w̄||2 (7)

minimize ||x̄ − w̄||2 (8)

where w is the winning prototype, and w̄ = 1
K

∑K
j=1 wj is the prototypes

centroid.
This new learning rule has an important feature: by (8), the centroid of the

prototypes approach the data centroid, so data are better represented by the pro-
totypes. Moreover, since w̄ ≈ x̄ in the limit, (7) can be approximately rewritten
as maximize ||w − x̄||2. And this implies that the value of (6) is maximized.
But, in addition, we have obtained another property of the solution: prototypes
centroid is close to data centroid.

Then, the definition of the perturbation term, g, is as follows:

g(xi, X, W ) = ||w̄ − x̄||2 − ||w − w̄||2 (9)

where w is the prototype verifying ||xi − w||2 = min
j=1,...,K

||xi − wj ||2.
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With this definition, the expression for the n-th distortion function Fn is:

Fn(W ) =
1
N

N∑

i=1

(
min

j=1,...,K
||xi − wj ||2 + αn · (||w̄ − x̄||2 − ||w − w̄||2)

)

= F (W ) + αn||w̄ − x̄||2 − αn

N

K∑

j=1

nj ||wj − w̄||2 (10)

This expression shows that by minimizing Fn we are also minimizing F and
the expression ||w̄ − x̄||2 (that is, w̄ ≈ x̄), as well as maximizing the total

dispersion of the prototypes
K∑

j=1

nj ||wj − w̄||2, very related to the maximization

of (6), as mentioned before.
The learning rule associated to this Fn is given by:

Δwj =

{
λ(xi − w) + λαn

K (x̄ − w̄) − (K−1)λαn

K (w̄ − w) if wj = w

λαn

K (x̄ − w) if wj �= w
(11)

It must be noted that, in this case, non-winning prototypes are also updated,
that is, in each step, network weights are completely changed. This fact does
not imply an increment of the computational time, since all updates are made
in parallel, but it helps to avoid non-optimal solutions.

4 Experimental Results

In this section we illustrate the effectiveness of proposed approach in image
compression.

In order to perform image compression with unsupervised learning, the set of
input patterns is built by subdividing the gray level image into square subim-
ages named windows. Hence, if the image size is m × n pixels and the window
size is k × k pixels, we will obtain approximately m×n

k2 windows. These win-
dows are our input patterns with p = k × k components (these patterns are
obtained by arranging the pixel values row by row from top to bottom). The
compression process consists in selecting a reduced set of K representative win-
dows (corresponding to the solution prototypes) and replacing each window of
the original image with the closest representative window among the prototypes.
In this experiment we have considered a window size of 4 × 4 pixels and K = 32
representative windows. Thus, the neural network has 32 output neurons.

As test images we have used the ones represented in Fig. 1. Each of these
images has 256×256 pixels, so the number of input patterns is N = 2562

42 = 4096.
The compression was made by using all of these sequential methods (no batch

training is used in this work):

– Simple Competitive Learning (SCL), given by (3).
– Expansive and Competitive Learning from [10] (ECL1), given by (4).
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(a) (b)

Fig. 1. Test images used in this work: (a) lenna, (b) kids

– Expansive and Competitive Learning from [11] (ECL2), given by (5).
– The proposed algorithm, whose learning rule is described by (11).

After 10 executions of each algorithm, the average distortion over the min-
imum is showed on Table 1. That is, if for one image the minimum distortion
obtained among all the algorithms is m0 and μi represents the average distortion
of the i-th algorithm in those 10 executions, the measure of the goodness present
in Table 1 is given by:

Mi =
μi − m0

m0

Table 1. Average results of the 4 algorithms compared in this work after 10 indepen-
dent executions

Image SCL ECL1 ECL2 Proposed
lenna 2.33 22.02 3.60 0.32
kids 1.48 3.99 2.39 1.42

It can be observed that the proposed algorithm achieves better results on
average than the other learning rules compared in this work.

In Fig. 2 we can compare the compression results of the four algorithms on
the test images.

If K = 32 representatives are used, and window size is 4 × 4, then 128
bits are needed to represent each window, but only 5 to represent the code-
words, so we may obtain a compression rate of 128 to 5, that is, 25 to 1
approximately.
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Fig. 2. Compressed images using (from top to bottom): SCL, ECL1, ECL2 and the
proposed learning rule
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5 Conclusions

In this work we have proposed a general framework for developing learning rules
with an added term that plays the role of a perturbation leading to better
compression results by including some kind of knowledge about the problem of
vector quantization.

This general framework englobes many of the learning rules most commonly
cited in the literature, just by defining in a proper way the perturbation term g.

With the help of some previous work [10,11], we have derived a new learning
rule that achieves better results by avoiding some local minima of the distortion
function, which measures the quality of the compression.

As a future research line, we intend to study the use of frameworks of this
kind, generalizing the usual competitive learning, and its convergence to (global
or local) minima of the distortion function. It will be interesting to study the
convergence in sequential training as well as in batch training.
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