
F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 127–134, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Automatic Model Selection for Probabilistic PCA 

Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato,  
Domingo López-Rodríguez, and María del Carmen Vargas-González 

School of Computer Engineering 
University of Málaga 

Campus de Teatinos, s/n. 29071 Málaga. 
Spain 

Phone: (+34) 95 213 71 55 
Fax: (+34) 95 213 13 97 

{ezeqlr,jmortiz}@lcc.uma.es, dlopez@ctima.uma.es 

Abstract. The Mixture of Probabilistic Principal Components Analyzers 
(MPPCA) is a multivariate analysis technique which defines a Gaussian 
probabilistic model at each unit. The number of units and principal directions in 
each unit is not learned in the original approach. Variational Bayesian 
approaches have been proposed for this purpose, which rely on assumptions on 
the input distribution and/or approximations of certain statistics. Here we 
present a different way to solve this problem, where cross-validation is used to 
guide the search for an optimal model selection. This allows to learn the model 
architecture without the need of any assumptions other than those of the basic 
PPCA framework. Experimental results are presented, which show the 
probability density estimation capabilities of the proposal with high 
dimensional data. 

Keywords: Probabilistic Principal Components Analysis (PPCA), dimensiona-
lity reduction, cross-validation, handwritten digit recognition. 

1   Introduction 

The original Mixtures of Probabilistic PCA (MPPCA) models [9] do not address the 
problem of selecting the optimal number of units (neurons) M nor the number of basis 
vectors qi for each unit i. This problem has been studied in the context of global PCA 
[2]. It has been also considered in the context of Bayesian PCA ([5], [6], [8]).  

The basic MPPCA framework obtains the optimal model parameters θ that 
maximize the data likelihood p( t | θ). This maximum likelihood (ML) strategy fails to 
take into account the problem of model complexity, since more complex models are 
not penalized, and this produces overfitting. The Variational Bayesian PPCA treats 
the model paramaters θ as random variables, and averages over the range of models 
they define. So, the data evidence p( t ) is used instead of data likelihood p( t | θ). 
However, these averages produce integrals that are analytically intractable, and we 
end up with various more or less exact approximations. Moreover, since the model 
paramaters θ are now random variables, the above mentioned process of averaging 
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requires that a probability model for θ  is assumed. Hence we get an approximation of 
a probability model of the parameters of a probability model of the real data, which 
may be very far from the real input probability distribution. We propose to avoid 
these idealizations by using a sound data-driven strategy such as the cross-validation. 
Furthermore, we propose a method to integrate the model parameter selection in the 
learning process. 

The outline of the paper is as follows. Section 2 is devoted to the original MPPCA 
model. In Section 3 we present the new model, called Dynamic Mixtures of 
Probabilistic Principal Components Analyzers (DMPPCA). Section 4 is devoted to 
computational experiments. Finally, conclusions are presented in Section 5. 

2   The MPPCA Model 

2.1   Mixture Model 

Each unit i of the network stores a PPCA model [9] to perform a dimensionality 
reduction from the observed (input) space dimension d to the latent (reduced) 
subspace dimension qi, with qi<d. The observed data t depend linearly on the latent 
variables in x, with a mean vector μ and a noise model ε: 

iii ε++= μxWt  (1) 

The latent variables are defined to be independent and gaussian with unit variance 
and zero mean. The noise model is also Gaussian such that ( )0,i iNε σ I∼ , and the d 

× qi parameter matrix Wi contains the factor loadings. This formulation implies that 
the observation vectors are also normally distributed, ( ),i iNt μ S∼ , with a 

covariance matrix T
iiii WWIS += σ . 

The MPPCA model is defined as a mixture of M PPCA units, where the prior 
probabilities or mixing proportions are called πi. The global probability distribution is 
defined as 
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2.2   Parameter Estimation 

Given M and qi, the maximum likelihood (ML) values of πi, Wi and σi can be 
computed by a expectation-maximization (EM) iterative algorithm [9]. At the 
convergence of the EM algorithm, the parameter matrix Wi can be decomposed as  

( ) iiiii RIΛUW
2/12σ−=  (3) 

where the columns of the d×qi matrix Ui are the eigenvectors corresponding to the qi 
principal directions of the subspace of neuron i, Λi is a qi×qi diagonal matrix with the 
corresponding leading eigenvalues, and Ri is a rotation matrix which may be 
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computed as the matrix of eigenvectors of the qi×qi matrix Wi
TWi. Then the 

decomposition of Wi is completed by normalization of the columns of WiRi
–1. 

3   The DMPPCA Model 

The DMPPCA model is an extension of the MPPCA where two procedures act in 
sequence: a vector basis resizing procedure and a procedure to change the number of 
units (mixture components) of the model. At each iteration, a variation of +1 or –1 in 
the number of basis vectors qi and in the number of units M is evaluated. In order to 
implement cross-validation, the training set used to compute the MPPCA parameters 
πi, Wi and σi is disjoint with the validation set used to decide the changes in M and qi. 

3.1   Vector Basis Reduction 

If we want to decrement the number of basis vectors of unit i by one, 1~ −= ii qq , we 

build the new eigenvalue matrix iΛ
~

 by selecting the qi–1 largest elements of the 

diagonal of iΛ . The corresponding qi–1 eigenvectors form iU
~

. Then, the new 

estimation of the noise variance takes into account the discarded principal direction: 
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Finally, equation (3) is used to obtain iW
~

, where we take IR =i
~

. 

3.2   Vector Basis Growth 

When we need to increment the number of basis vectors of unit i by one, 1~ += ii qq , 

we face with the problem of computing the iq~ -th eigenvector without computing the 

covariance matrix Si explicitly. This is required in order to maintain the linear 
computational complexity of the method in the size of the input space d. We propose 
to use the Symmetric Power method [3] to find the eigenvector corresponding to the 
largest eigenvalue of the linear subspace of dimension d–qi formed by the d–qi least 
important principal directions. We take into account that the difference vector tn–μi of 
a training sample tn can be decomposed by projecting it onto the d principal directions 
of the local subspace: 
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where uj
i is the j-th eigenvector of the basis of unit i. On the other hand, the 

covariance matrix Si can also be decomposed in its eigenvalues and eigenvectors: 
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where Rni = p( tn | i )πi / p( tn ) is the resposibility of mixture component i for the 
generation of training sample tn. By substituting (5) in (6) we obtain 
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So we can consider a covariance matrix which takes into account only the d–qi 
lesser principal directions: 
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Now we need to compute the largest eigenvalue of iŜ , and its corresponding 

eigenvector, by the Symmetric Power method. This method needs to evaluate the 

product of iŜ  by an arbitrary vector v, which can be done in O(d) by considering the 

projection error vector instead of the difference vector tn–μi: 
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where the reconstruction vector of training sample tn for the unit i is found as follows: 
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The eigenvalue/eigenvector pair computed by the Symmetric Power method is 

used as the iq~ -th columns of iΛ~  and iU
~

, respectively. Then we apply (3) to get iW
~

, 

as before. Finally, 
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3.3   Basis Size Selection 

In order to decide if increment, decrement, or leave as it is the basis vector size of unit 
i, we use the criterion of the maximum log-likelihood L measured over the validation 
set, 
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So, we compute for a unit i, which of the three options gives the maximum L, and 
apply the changes (if any). Then we evaluate a new unit, and the process continues 
until there are no more units in the model. The units are evaluated in random order. 
When the evaluation process is finished, we run the EM algorithm with the training 
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set to obtain the maximum likelihood parameters πi, Wi and σi for the new values of 
qi, if any change has been applied. 

3.4   Unit Removal and Creation 

In order to remove the unit j from the model, we renormalize the a priori probabilities 
of the remaining units: 

∑
≠

=

jk
k

i
i π

ππ~  
(13) 

On the other hand, if we need to create a new unit, we select an existing unit i to 
split it into two. Each of the two ‘daughter units’ receives a half of the a priori 
probability πi of their ‘mother’. The parameters Wi and σi are inherited without 
changes, and the mean vectors are slightly perturbated in order to avoid two exactly 

identical units. Hence one of the daughters has a mean vector i
i 1uμ ε−  and the other 

i
i 1uμ ε− , where i

1u  is the eigenvector of the first principal direction of unit i and ε>0 

is arbitrarily small. 
In order to decide if remove, duplicate, or leave the unit i as it is, we use the 

criterion of the maximum log-likelihood L measured over the validation set (12). So, 
we compute for a unit i, which of the three options gives the maximum L, and apply 
the changes (if any). Then we evaluate a new unit, and the process continues until 
there are no more units in the model (the newly created units are not evaluated). Like 
before, the units are evaluated in random order. When the evaluation process is 
finished, we run the EM algorithm with the training set to obtain the maximum 
likelihood parameters πi, Wi and σi for the modified model, if any deletion or creation 
has been applied. 

3.5   Summary 

The DMPPCA model can be summarized as follows: 

1. Set the initial values of M and qi, and apply the EM algorithm to obtain 
maximum likelihood parameters πi, Wi and σi. 

2. Evaluate possible changes in the size of vector bases qi, as explained in 
subsections 3.1, 3.2 and 3.3. Apply the selected changes (if any). 

3. If step 2 resulted in any change, apply the EM algorithm to obtain maximum 
likelihood parameters πi, Wi and σi. 

4. Evaluate possible removal and/or creation of units, as considered in 
subsection 3.4. Apply the selected changes (if any). 

5. If step 4 resulted in any change, apply the EM algorithm to obtain maximum 
likelihood parameters πi, Wi and σi. 

6. If steps 2 or 4 produced any change, go to step 2. Otherwise, stop. 
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4   Computational Results 

We have selected some databases to test the probability density estimation performance 
of our proposal. The ‘Sixes’ and ‘Twos’ databases are composed of 28×28 grayscale 
images (256 gray levels) of handwritten sixes and twos, and come from the MNIST 
Handwritten Digit Database [7]. The ‘VizieR’ database comes from the VizieR service 
[10], which is an information system for astronomical data. In particular, we have 
selected the Table 6 of the Complete near-infrared and optical photometric CDFS 
Catalog from Las Campanas Infrared Survey. We have extracted 22 numerical features 
from 10,000 stars. The ‘Faces’ database is the Yale Face Database B [4]. 

Table 1. ANLL (test set). The standard deviations for the 10 runs are shown in parentheses. 

Database DPCCA VBMFA 
Faces –112.2755 (1.7426) –24.6031 (0.8789) 
Sixes –90.0612 (12.2074) –32.7079 (11.7853) 
Twos –65.5737 (6.1066) –30.0245 (5.3913) 
VizieR 5.5600 (0.6480) 19.7465 (8.6321) 
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Fig. 1. Evolution of ANLL (validation set) during DPPCA training on ‘VizieR’ database 
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Fig. 2. Evolution of ANLL (validation set) during DPCCA training on ‘Faces’ database 
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We have selected the Variational Bayesian Mixtures of Factor Analyzers 
(VBMFA) by Ghahramani & Beal [5] to compare our model. The VBMFA has the 
same goal as ours, i.e., automatic selection of the number of mixing components and 
principal directions for probability distribution modeling. We have used the 
MATLAB implementation of the VBMFA model by Beal [1], with his selection of 
the model parameters. 

For our DPPCA model we have started the simulations with M=10 and qi=2 for all 
units, and a limit of 30 iterations of the loop of subsection 3.5 (epochs) has been set. 

We have run a 10-fold cross-validation, with disjoint training, validation and test 
sets. The Average Negative Log-Likelihood (ANLL) computed on the test set has 
been used as the performance measure: 
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1

log
1

t  (14) 

The results for the considered databases are presented in Table 1. We can see that 
the DMPCCA clearly outperforms VBMFA in all tests. Furthermore, the standard 
deviation data demonstrate that our proposal is also stable. 

We can see in Figs. 1 and 2 the evolution of the ANLL computed on the validation 
set for a single simulation run with the ‘VizieR’ and ‘Faces’ database, respectively. 
Similar results were obtained with ‘Sixes’ and ‘Twos’ databases and therefore, 
omitted. We can see that the DMPCCA model shows a stable behaviour, with a first 
phase of fast decrease of ANLL, followed by a more stabilized phase. Please note that 
the simulations end before epoch 30, because there are no more changes to be made, 
that is, convergence is reached in less than 30 epochs. 

5   Conclusions 

We have proposed a a new Probabilistic PCA model which learns the maximum 
likelihood values of the number of mixing components and number of principal 
directions for each component. It features a cross-validation method to control the 
growth of the model and to avoid overfitting, without the need of additional 
assumptions on the characteristics of the input distribution. We have presented 
experimental results that show the performance of our proposal when compared with 
a well-known Variational Bayesian PCA approach. 
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