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Abstract. We present a new neural model, which extends Kohonen’s self-
organizing map (SOM) by performing a Probabilistic Principal Components 
Analysis (PPCA) at each neuron. Several self-organizing maps have been 
proposed in the literature to capture the local principal subspaces, but our 
approach offers a probabilistic model at each neuron while it has linear 
complexity on the dimensionality of the input space. This allows to process 
very high dimensional data to obtain reliable estimations of the local probability 
densities which are based on the PPCA framework. Experimental results are 
presented, which show the map formation capabilities of the proposal with high 
dimensional data. 
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1   Introduction 

The concept of self-organization seems to explain several neural structures of the 
brain that perform invariant feature detection. These structures inspired the proposal 
of computational maps designed to explore multidimensional data. The original self-
organizing map (SOM) was proposed by Kohonen [2], where each neuron had a 
weight vector to represent a point of the input space. 

The Self-Organizing Mixture Model (SOMM) by Verbeek et al. [8] uses a version 
of the expectation-maximization (EM) method to produce an extension of the SOM 
where a mixture of restricted Gaussians is defined. Nevertheless, it has some 
scalability problems when the size of the map grows. 

Other families of self-organizing maps include kernel-based topographic maps [7], 
where Gaussian kernels are defined around a centroid. 

Our aim here is to develop a self-organizing model with online learning of the local 
subspaces of an input distribution, which is based on the Probabilistic PCA 
framework. Furthermore, our proposal has linear complexity both in the size of the 
map and in the input space dimension, so that it is suited for high dimensional data.  
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The outline of the paper is as follows. In Section 2 we present the new model, 
called Probabilistic Principal Components Analysis Self-Organizing Map 
(PPCASOM). Section 3 is devoted to computational experiments. Finally, conclusions 
are presented in Section 4. 

2   The PPCASOM Model 

2.1   Mixture Model 

Each neuron of the map stores a PPCA model [6] to perform a dimensionality 
reduction from the observed (input) space dimension d to the latent (reduced) 
subspace dimension q, with q<d. The observed data t depend linearly on the latent 
variables in x, with a mean vector μ and a noise model ε: 

ε++= μWxt  (1) 

The latent variables are defined to be independent and gaussian with unit variance 
and zero mean. The noise model is also gaussian such that ( )0,Nε σ I∼ , and the d × 

q parameter matrix W contains the factor loadings. This formulation implies that the 
observation vectors are also normally distributed, ( ),Nt μ C∼ , with a covariance 

matrix TWWIC += σ . 
The PPCASOM model is defined as a mixture of H PPCA units (or neurons), 

where the prior probabilities (or mixing proportions πi) are constrained to be equal: 
∀i, πi=1/H.  This restriction is aimed to achieve self-organization at the network 
(mixture) level by replacing the standard likelihood-guided mixture learning with a 
topology-guided learning, as we will see in subsection 2.4. That is, we seek 
topologically ordered states of the network which may not be states of maximum 
likelihood. At the neuron level the network topology is not relevant, so the maximum 
likelihood approach is used (subsection 2.3).  

2.2   Competitive Process 

At each time step n the network is presented a data sample tn. Then, a Bayesian model 
selection is carried out to decide which neuron has the most probability p(i | tn) of 
having generated the sample. This neuron is called the winning neuron. Since the prior 
probabilities πi are equal, this is equivalent to find the maximum value of p(tn | i): 

( ) ( ){ } ( ){ }ipipnWinner n
i

n
i

|maxarg|maxarg tt ==  (2) 

where 

( ) ( ) ( )2/exp2| 22/12/
nii

d
n Eip −= −− Ct π  (3) 

( ) ( )Tiniinni CE μtμt −−= −12  (4) 
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Now we need a procedure to compute p(tn | i) in O(d). From PPCA we know that 
the parameter matrix Wi can be decomposed as 

( ) iiqiqii RIKUW
2/12σ−=  (5) 

where the columns of the d×q matrix Uqi are the eigenvectors corresponding to the q 
principal directions of the subspace of neuron i, Kqi is a q×q diagonal matrix with the 
corresponding eigenvalues, and Ri is a rotation matrix which may be computed as the 
matrix of eigenvectors of the q×q matrix Wi

TWi. Then the decomposition of Wi is 
completed by normalization of the columns of WiRi

–1. 
The error term Eni can be expressed in terms of this decomposition: 

2212 / iriinqi
T

inni EE σ+= − zKz  (6) 

where zin is the projection of tn – μi onto the principal subspace of neuron i and Eri is 

the reconstruction error corresponding to the reconstruction vector i
nt̂ . 

2.3   Neuron Update 

When a new sample tn has been presented to the network, its information should be 
used to update the neurons. If we want to update neuron i with the information from 
sample tn, an online version of the original expectation-maximization (EM) method of 
the PPCA model is required. The online EM will generate the updated values σi(n) 
and Wi(n) from the old values σi(n–1), Wi(n–1) and the new sample tn. 

First we consider the original M-step equations for W and σ: 
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where the corresponding E-step equations are: 
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The summations on j of equations (7) and (8) represent the contributions of all the 
input samples tj which have been incorporated so far into the PPCA model of neuron 
i. So, we can split these contributions in two parts: the past samples (j=1,...,n–1) and 
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the current sample (j=n). In the case of matrix Wi, this leads to rewrite equation (7), 
with a 1/n factor added for notational convenience: 
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where αi(n)= 1/n, then equation (12) can be rewritten as 

( ) 1~~~ −= iii ΞΩW  (17) 

Now the EM method uses equations (15), (16) and (17) at each iteration. It must be 
noted that the value of Wi is updated in every EM iteration by equation (17), while the 
values of Ωi and Ξi are not updated until the EM algorithm has converged. This means 
that in the right side of equations (15) and (16) we always use the old values Ωi(n–1) 
and Ξi(n–1) obtained with the previous sample tn–1. The reason is that Ωi(n–1) and 
Ξi(n–1) store valuable information from past input samples. Hence we restrict the 
optimization so that Ωi(n–1) and Ξi(n–1) are fixed. Furthermore, this avoids the 
reprocessing of the past input samples with the updated values of Wi. The use of 
equations (15) and (16) at each EM iteration is needed only to account for the effect 
of the change in the estimations of Wi and Mi on the present input sample tn during 
the EM optimization. 

If we vary αi(n) in the range 0≤αi(n)≤1, then equations (15) and (16) become 
weighted sums of the terms given by (9) and (10). High values of αi(n) mean that the 
present input sample is given more importance in the weighted sum with respect to 
past samples, and vice versa. That is, αi(n) controls the amount of learning at time 
step n. A similar approach can be used with σ , and the final result is: 
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where αi(n)=1/n. Here σi
2 is taken from the previous time step n–1, in order to take 

advantage of the accumulated sum. Equation (18) is used at each iteration of the EM 
optimization. Finally, the mean vector is updated without the need of an optimization: 
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where again αi(n)=1/n. Equation (19) should be used before the EM optimization, in 
order to use the best approximation possible to the mean vector. 

2.4   Self-organizing Map Formation 

The emergence of a self-organizing pattern is obtained by tuning the learning control 
parameter αi(n). First of all, a topology is defined in the network so that the 
topological distance between neurons p and q is called δ(p,q). A rectangular lattice 
may be used. Other topologies could be also considered, like hexagonal or toroidal. 

The learning control parameter is selected for each neuron i so that the neurons 
which are nearer to the winner learn more: 
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where both the learning rate η(n) and the neighbourhood radius Δ(n) are decreasing 
functions of n such that 0≤η(n)≤1 and Δ(n)>0. A standard choice is the linear decay. 
Note that if we used αi(n)=η(n) we would get a competitive learning neural network 
with no self-organization. 

2.5   Summary 

The PPCASOM model can be summarized as follows: 

1. Set the initial values μi(0), σi(0), Wi(0), Ωi(0) and Ξi(0) for all neurons i 
following the standard PPCA initialization presented in [5]. 

2. Choose an input sample tn and compute the winning neuron by (2). 
3. For every neuron i, compute its learning parameter αi(n) with (20). 
4. For every neuron i, estimate its mean vector μi(n) by equation (19). 
5. For every neuron i, run the EM iteration by using equations (15), (16), (17) and 

(18) until the EM method converges. The values obtained at convergence are 
the updated values σi(n), Wi(n), Ωi(n) and Ξi(n). 

6. If the map has converged or the maximum time step has been reached, stop. 
Otherwise, go to step 2. 

The above PPCASOM algorithm has linear complexity in the size of the input 
space dimension d. It is also linear in the number of neurons H. This allows to process 
high dimensional data sets, as we will see in the computational experiments. 
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3   Computational Results 

We have chosen four high-dimensional data sets in order to test the self-organization 
ability of our proposal. The ‘Faces’ database [4] is composed of 64×64 grayscale 
images (256 gray levels) which are versions of a computer-generated human face with 
different poses and lighting directions. The ‘Sixes’ and ‘Twos’ databases are 
composed of 28×28 grayscale images (256 gray levels) of handwritten sixes and twos, 
and come from the MNIST Handwritten Digit Database [3]. The ‘Video’ database [1] 
is composed of 64×52 grayscale images (256 gray levels), which have been obtained 
by reducing original video frames with 352×288 with 24 bits per pixel (RGB color 
space). The details are shown in Table 1. 

Table 1. Data sets and parameter selections for PPCASOM. T is the number of epochs, d is the 
dimension of the input space and q is the dimension of the latent subspace. 

Data set # of input 
samples 

T d q Topology 

Faces 698 30000 4096 2 7×7, flat 
Sixes 5918 30000 784 5 8×8, flat 
Twos 5958 30000 784 3 8×8, flat 
Video 1262 30000 3328 2 8×8, toroidal 

The final network states are pictured in Figures 1 and 2 for datasets ‘Faces’ and 
‘Twos’. We have plotted the mean vectors and the q first eigenvectors in image 
format. We can see that the network self-organizes, and that the eigenvectors capture 
relevant features of the input data sets. 

In order to compare the performance of the PPCASOM model with similar 
proposals, we have selected the Self-Organizing Mixture Model (SOMM) by Verbeek 
et al. (2005) and the joint entropy maximization kernel based topographic maps 
(KBTM) by Van Hulle (2002b). We have considered the homoskedastic version of 
Van Hulle’s maps because the heteroskedastic version is O(d3) per step, which limits 
its use with the considered databases. 

 

Fig. 1. Results for the ‘Faces’ database: mean vectors (left), first eigenvectors (middle) and 
second eigenvectors (right) 
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Fig. 2. Results for the ‘Twos’ database. From up to down and from left to right: mean vectors, 
first eigenvectors, second eigenvectors and third eigenvectors. 

The size of the map has been the same for PPCASOM, SOMM and KBTM, and 
can be seen on the ‘Topology’ column of Table 1. The optimized version of SOMM 
has been used for the tests. We have simulated the KBTM for 2,000,000 steps, with  
parameters ηw=0.01, ησ=10–4ηw. 

Since the three self-organizing models we are comparing define probability 
distributions, we measure their performance by the average negative log-likelihood: 

( )∑
=
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n
np

P
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1

log
1

t  (21) 

The results of the 10-fold cross-validation are shown in Table 2. We can see that 
the PPCASOM clearly outperforms SOMM and KBTM in all the tests. Hence our 
proposal achieves a better representation of the input with a small complexity. 

Table 2. ANLL mean values for the considered data sets (standard deviations in parentheses) 

Data set PPCASOM SOMM KBTM 
Faces –5472.35 (195.70) –2846.4 (139.52) –452.28 (65.23) 
Sixes –338.46 (10.4) –252.72 (7.56) –52.35 (3.31) 
Twos –175.01 (4.85) –130.36 (2.94) –19.98 (2.55) 
Video –7254.48 (291.57) –2732.0 (414.70) –705.06 (59.57) 
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4   Conclusions 

We have presented a new self-organizing neural model, which features online 
learning of the local principal subspaces of the input data. It is based on a mixture of 
Gaussians where only a certain number q of relevant principal directions is 
considered. It is particularly suited for high dimensional data because it has a linear 
computational complexity. Experimental results have been presented that show the 
self-organization capabilities of the model. In particular, it outperforms two self-
organizing maps based on mixtures of homoskedastic Gaussians. Hence, our model 
achieves both scalability and a correct representation of the input distribution. 
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