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Abstract. In this work, we propose the use of two neural models performing
jointly in order to minimize the same energy function. This model is focused
on obtaining good solutions for the two pages book crossing problem, although
some others problems can be efficiently solved by the same model. The neural
technique applied to this problem allows to reduce the energy function by chang-
ing outputs from both networks –outputs of first network representing location of
nodes in the nodes line, while the outputs of the second one meaning the half-
plane where the edges are drawn.

Detailed description of the model is presented, and the technique to minimize
an energy function is fully described. It has proved to be a very competitive and
efficient algorithm, in terms of quality of solutions and computational time, when
compared to the state-of-the-art methods. Some simulation results are presented
in this paper, to show the comparative efficiency of the methods.

1 Introduction

In the last few years, several graph representation problems have been studied in the lit-
erature. Most of them are related to the linear graph layout problem, in which
the vertices of a graph are placed along a horizontal “node line”, or “spine” (dividing
the plane into two half-planes or “pages”) and then edges are added to this representa-
tion as specified by the adjacency matrix. The objective of this problem is to minimize
the number of crossings produced by such a layout.

Some examples of problems associated to this linear graph layout problem (or 2
pages crossing number problem) are the bandwidth problem [1], the book thickness
problem [2], the pagenumber problem [3,4], the boundary VLSI layout problem [5] and
the single-row routing problem [6], or printed circuit board layout [7] and automated
graph drawing [8]. In the case of designing a printed circuit board, for the case of
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Fig. 1. Optimal linear layouts for K6 and K3,3

non-insulated wires, overlapping wires between electrical components may cause short
circuits and thus may be avoided as much as possible.

Several authors study a restricted version of this problem in which the vertex order
is predetermined and fixed along the node line, and edges are drawn as arcs in one of
the two pages [9]. Other authors are more interested in the variant in which the node
order is not fixed [10]. For this variant, it has been considered necessary to first find an
optimal ordering of the vertices in order to compute the layout.

This problem is NP-hard [11,12]. So, many researchers have focused on finding ef-
ficient algorithms (some of them specially designed for the case of certain families of
graphs) to solve the graph layout problem.

A comparison of several heuristics for this problem is presented in [9], including
greedy, maximal planar, one-page, bisection and a neural heuristic, among others. Con-
cretely, the neural model developed in [13] (and based on Takefuji and Lee’s work
[14,15]) was tested and obtained very good results, although authors indicate the possi-
bility of non-convergence of this method. Due to the use of binary neurons, the model
needs 2M neurons to represent the solution for a graph of M edges.

In this work we present a neural model designed to solve this problem. One of the
differences of our model with the algorithms developed in literature is that there is no
need of assigning a good ordering of the vertices at a preprocessing step. This optimal
node order is computed by the model, as well as the relative position of the arcs.

Our model is a variant of the multivalued MREM model which has obtained very
good results when applied to other combinatorial optimization problems [16,17,18,19],
guaranteeing the convergence to local minima of the energy function.

2 Formal Description of the Problem

Let G = (V, E) be an undirected graph where V = {vi} is the set of vertices and
E = (ei,j) is a symmetric binary matrix where ei,j = 1 if the edge (vi, vj) exists.

The Two-page book Crossing Number Problem (2PLCN) consists in placing the
graph nodes on a horizontal “node line” in the plane. Every edge can be drawn as an arc
in one of the two half-planes (pages). The objective is to minimize the number of edge
crossings. This problem belongs to the class of NP-hard optimization problems, even if
nodes are fixed and only arcs can be drawn on the upper or lower half-plane.

An example of linear embedding of the complete graphs K6 and K3,3 with 3 and 1
crossings, respectively, is drawn in Fig. 1.
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Fig. 2. Crossing condition i < k < j < l

2.1 Crossings Detection

Let us consider 4 positions in the node line verifying 1 ≤ i < k < j < l ≤ N , where i,
j, k and l are assigned to nodes vi, vj , vk and vl. Then, edges (vi, vj) and (vk, vl) are
crossed if, and only if, both are represented (drawn) in the same half-plane.

In Fig. 2, we can observe that edges (vi, vj) and (vk, vl), represented in the node line
and with endpoints i < k < j < l, produce a crossing, whereas if i < j < k < l they
do not, when both are represented in the same half-plane.

It seems reasonable to define Vva,vb
= +1 to indicate that the edge (va, vb) will be

represented in the upper half-plane, whereas Vva,vb
= −1, indicates that the arc will be

drawn in the lower one. If the edge does not exist, we define Vva,vb
= 0.

These definitions allow us to define the number of crossings by means of the cost
function:

C =
∑

i

∑

k>i

∑

j>k

∑

l>j

δ(Vvi,vj , Vvk,vl
)(1 − δ(Vvi,vj , 0)) (1)

where δ(x, y) = 1 if x = y and equals 0, otherwise (Krönecker delta function).
In Eq. (1), the term δ(Vvi,vj , Vvk,vl

) expresses that edges (vi, vj) and (vk, vl) will be
drawn in the same half-plane, whereas (1 − δ(Vvi,vj , 0)) indicates that the edge exists.

3 The Neural Model MREM

It consists in a series of multivalued neurons, where the state of i-th neuron is charac-
terized by its output (vi) that can take any value in any finite set M. This set can be a
non numerical one, but, in this paper, the neuron outputs only take value in M ⊂ Z.

The state vector V = (v1, v2, . . . , vN ) ∈ MN describes the network state at any
time, where N is the number of neurons in the net. Associated with any state vector,
there is an energy function E : MN → R, defined by the expression:

E(V ) = −1
2

N∑

i=1

N∑

j=1

wi,jf(vi, vj) +
N∑

i=1

θi(vi) (2)

where W = (wi,j) is a matrix, f : M × M → R is usually a similarity function since
it measures the similarity between the outputs of neurons i and j, and θi : M → R is a
threshold function. At each step, the state vector will be evolving to decrease the value
of the energy function.
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The cost function (number of crossings in the graph given by Eq. (1)), must be iden-
tified with the energy function of Eq. (2). As a result, we obtain wi,j = 1 if i < j and 0
otherwise. The similarity function f(vi, vj) and the threshold θi can be expressed as:

f(vi, vj) = −2
∑

k

∑

l>k

δ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

θi(vi) = −
∑

j

wi,j

∑

k≤j

∑

l>k

δ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

To solve the 2PLCN problem we have considered two MREM neural models:

– The first network will be formed by N neurons, being N the number of nodes
in the graph. Neurons output (the state vector) indicate the node ordering in the
line. Thus, vi = k will be interpreted as the k-th node being placed in the i-th
position in the node line. Hence, the output of each neuron can take value in the set
M1 = {1, 2, . . .N}.

– The second network will be formed by as many neurons as edges in the graph, M .
The output of each neuron will belong to the set M2 = {−1, 1}. As mentioned
before, for the arc (vi, vj), Vvi,vj = −1 will indicate that the edge will be drawn
in the lower half-plane and Vvi,vj = +1 in the upper one. Vvi,vj = 0 expresses the
absence of edge.

Initially, the state of the net of vertices is randomly selected as a permutation of
{1, 2, . . . , N}. At any time, the net is looking for a better solution than the current one,
in terms of minimizing the energy function.

In this paper, we study the permutation of two nodes and the change in the location
of an edge. These produce the energy increment given in the next subsections.

3.1 Permutation of Two Nodes

When two vertices va and vb permute their order a and b in the node line, we should
take into account that the only edges changing their position (and therefore changing
the number of crossings) are those that have exactly one endpoint in {va, vb}.

Let us study the increase in the number of crossings depending on the relative posi-
tions of the endpoints.

Let us see how the number of crossings with the edge (vx, va) is modified when it
becomes the edge (vx, vb) since nodes a and b permute their positions. Hence, the arc
represented with endpoints (x, a) will be drawn, after the update, with endpoints (x, b),
and the only edges modifying the number of crossings due to the change must be in the
same half-plane and must have an endpoint vs represented between a and b (a < s < b)
and the other, vt, outside that interval ((t < a) ∨ (t > b)). Some cases, depending on
the position of x, are considered:

1. Case x < a < s < b: As shown in Fig. 3 (1), if t < x < a < s < b the number of
crossings is increased in one unit, since the edge (t1, s) crosses the arc (x, b), but
not (x, a). If x < t < a < s < b, a crossing disappears (the arc (t2, s) cuts (x, a)
but not (x, b)) and, at last, if x < a < s < b < t, the number of crossings will be
increased in 1 unit (analize the arc (s, t3)).
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Fig. 3. Changes in the number of crossings when permuting nodes va and vb, represented at
positions a and b. An edge represented by the arc (a, x) will be transformed into the arc (b, x).
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Fig. 4. Changes in the number of crossings when permuting nodes va and vb. Edges represented
by arcs (a, x) and (y, b) are transformed into arcs (b, x) and (y, a).

2. Case a < x < b: As shown in Fig. 3 (2), if t < a < x < s < b, or a < x < s < b <
t, a new crossing is introduced (represented by the cuts of arcs (s2, t1) and (s2, t2)
with the new edge (x, b)), whereas if t < a < s < x < b or a < s < x < b < t the
number of crossings is reduced since crossings of (s1, t1) and (s1, t2) with (a, x)
disappear).

3. Case a < s < b < x: A crossing is introduced if a < s < b < t < x (arc (s, t2))
and will be erased if t < a < s < b < x, or, a < s < b < x < t (arcs (t1, s) and
(s, t3)), as shown in Fig. 3 (3).

We must also take into account the change in the number of crossings with edges
(vx, vb). Its study is similar to the already made for (vx, va), it suffices to permute the
literals a and b and to change the sense of the inequalities.

Finally, let us consider changes in the number of crossings produced between edges
(va, vx) and (vb, vy). All possible changes are shown in Fig. 4. There are different cases:

1. Case a < y < x < b:
– Edges (a, x) and (y, b) (Fig. 4 (1)) are transformed into (x, b) and (y, a) (Fig.

4 (2)), vanishing the existing crossing.
– Edges (a, y) and (x, b) (Fig. 4 (2)) are transformed into (b, y) and (x, a) (Fig.

4 (1)), causing the apparition of a crossing.
2. Case y < a < b < x:

– When edges (a, x) and (y, b) (Fig. 4 (3)) are transformed into (x, b) and (y, a)
(Fig. 4 (4)), a new crossing is formed.
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– Arcs (a, y) and (x, b) (Fig. 4 (4)), are transformed into (b, y) and (x, a) (Fig. 4
(3)), and a crossing is eliminated.

We can derive an explicit formula for the increase of energy related to all these cases,
just by considering that Eq. (2) (the number of crossings) can be rewritten as:

E =
∑

i

∑

j

wi,j

∑

k

wj,k

∑

l

wk,lδ(Vvi,vk
, Vvj ,vl

)(1 − δ(Vvi,vk
, 0))

and by denoting g(x, y, s, t) = δ(Vx,s, Vy,t)(1−δ(Vx,s, 0)), then the increase of energy
caused by the permutation of nodes a and b is given by:

ΔE =
∑

i∈{a,b}

∑

j

wi,j

∑

k

wj,k

∑

l

wk,l (g(vi, vj , vk, vl) − g(v′i, vj , vk, vl))+

+
∑

i

∑

j∈{a,b}
wi,j

∑

k

wj,k

∑

l

wk,l

(
g(vi, vj , vk, vl) − g(vi, v

′
j , vk, vl)

)
+

+
∑

i

∑

j

wi,j

∑

k∈{a,b}
wj,k

∑

l

wk,l (g(vi, vj , vk, vl) − g(vi, vj , v
′
k, vl))+

+
∑

i

∑

j

wi,j

∑

k

wj,k

∑

l∈{a,b}
wk,l (g(vi, vj , vk, vl) − g(vi, vj , vk, v′l)) (3)

where v′s = va if vs = vb; v′s = vb, if vs = va; otherwise v′s = vs.

3.2 Change of the Position of an Edge

When the edge with endpoints va, vb is represented in a given half-plane and its location
changes (from the upper to the lower half-plane, or viceversa), an increase (or decrease)
of the energy function (number of crossings) is produced and is given by ΔE =

= (1 − δ(Vva,vb
, 0))

∑

a<s<b

∑

(t<a)∨(t>b)

(2δ(Vva,vb
, Vvs,vt) − 1)(1 − δ(Vvs,vt , 0)) (4)

This expression can be obtained from Eq. (2), by simplifying the difference between
the number of crossings before and after the possible change, since edges (vx, vy) with
both endpoints located between a and b in the node line (a < x < b, a < y < b), or
both placed outside the interval [a, b], i. e., x, y �∈ [a, b], do not contribute to modify the
number of crossings with (va, vb), which is the changed edge.

4 Implementation for Two-Page Book Crossing Number Problem

Several dynamics can be used to solve this problem with our model, but we have chosen
the following one due to its simplicity and efficiency:

1. Initialization: Given a graph with N nodes and M edges, a random feasible initial
configuration V 0 is selected for the location of the nodes. This initial state will be
a permutation of the set of node indices {1, 2, . . . , N}.

For the edges set, the initial state vector W 0 will be a random element of
{−1, 1}M . The output Vvi,vj = −1 means that the arc (i, j) will be represented
in the lower half-plane, and if Vvi,vj = 1, the arc will be placed in the upper
half-plane.
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2. Two positions a and b in the node line are selected in all possible ways.
Firstly, the net studies the increase of energy when vertices va and vb are per-

muted by using Eq. (3). If the energy is reduced, the net permutes the vertices:
va(t + 1) = vb(t), vb(t + 1) = va(t). Secondly, the net studies to change the
half-plane in which the edge (va, vb) is located. To this end, the increase of en-
ergy given by Eq. (4) is computed and if it is negative, the change is done. Thus,
Vva,vb

(t + 1) = −Vva,vb
(t).

3. If all possible combinations of two positions have been considered and no change
has been made, both networks have converged to a local minimum of the energy
function (the cost function) and state vectors represent the obtained solution.

5 Simulation Results

In this Section we test the performance of our model and compare it with the neural
heuristic proposed in [13] for a test set formed by graphs belonging to well-known
graph families. Concretely:

– Complete graphs Kn, where all n nodes are interconnected (no self-connections).
– Circulant graphs Cn(a1, . . . , ak), where 0 < a1 < . . . < ak < n+1

2 is a graph with
n vertices such that vertex i is adjacent to vertices i ± a1, . . . , i ± ak(mod(n)).

In order to compare the efficiency, we use the results given in [9] for Cimikowski’s
neural heuristic (CN) and for branch-and-bound algorithm (B&B). B&B results are only
shown to give an idea of the optimal solutions.

Table 1. Comparative results of our proposed model with respect to Cimikowski’s model and
branch-and-bound heuristic for circulant graphs Cn(.). A two-values entry (LB:UB) indicates
lower and upper bounds for the optimal solution by B&B.

Graph Prop. CN B&B Graph Prop. CN B&B
C20(1, 2) 0 (5.6) 2 0 C30(1, 3, 5, 8) 282 (342.9) 302 36:1980
C20(1, 2, 3) 22 (29.6) 24 22 C30(1, 2, 4, 5, 7) 406 (442.6) 398 66:3540
C20(1, 2, 3, 4) 74 (89.9) 74 26:870 C32(1, 2, 4, 6) 158 (224.4) 190 38:2256
C22(1, 2) 2 (6.7) 2 0 C34(1, 3, 5) 115 (132.6) 106 6:1122
C22(1, 2, 3) 22 (31.2) 26 24 C34(1, 4, 8, 12) 320 (360.3) 574 40:2550
C22(1, 3, 5, 7) 205 (229.6) 200 28:1056 C36(1, 2, 4) 60 (83.2) 54 6:1260
C24(1, 3) 12 (17.0) 14 12 C36(1, 3, 5, 7) 349 (377.1) 328 42:2862
C24(1, 3, 5) 76 (90.7) 78 72 C38(1, 7) 58 (67.4) 86 84
C24(1, 3, 5, 7) 239 (261.0) 220 30:1260 C38(1, 4, 7) 20 (36.1) 192 6:1406
C26(1, 3) 11 (20.2) 16 14 C40(1, 5) 44 (62.8) 58 56
C26(1, 3, 5) 78 (95.4) 82 6:650 C42(1, 4) 44 (62.5) 42 42
C26(1, 4, 7, 9) 341 (363.0) 364 32:1482 C42(1, 3, 6) 131 (190.0) 160 6:1722
C28(1, 3) 16 (25.1) 16 14 C42(1, 2, 4, 6) 216 (311.2) 246 48:3906
C28(1, 3, 5) 91 (106.5) 86 6:756 C44(1, 4, 5) 119 (170.0) 180 6:1892
C28(1, 2, 3, 4) 114 (133.8) 110 34:1722 C44(1, 4, 7, 10) 567 (686.8) 638 50:4290
C28(1, 3, 5, 7, 9) 589 (649.6) 560 62:3080 C46(1, 4) 46 (60.6) 46 46
C30(1, 3, 5) 97 (109.9) 96 6:870 C46(1, 5, 8) 299 (350.7) 296 6:2070
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For every graph, 10 independent executions of our model were performed.
In the case of the complete graphs Kn, with n ∈ {5, . . . , 13}, our model always has

achieved the known theoretical optimal solution, as well as Cimikowski’s model did.
For circulant graphs Cn(.), comparative results are shown in Table 1. Values between

parentheses are the average number of crossings among 10 executions.
It can be observed that, although average values of our model are not lower than the

optimal solutions of Cimikowski’s, our best solution is, in many cases, lower.
In addition, CN is not able to perform better than B&B when the optimal solution

achieved by the latter is known, whereas our network improves it in some cases.
We must note that CN is a neural model which needs the fine-tuning of some pa-

rameters, and our model does not. Also, CN needs of a preprocessing step in which
graph nodes are ordered and then remain fixed along the iterations. Our model is able
to dynamically obtain a very good ordering.

6 Conclusions and Future Work

In this work we have presented a new neural model especially designed to solve some
kinds of combinatorial optimization problems. This model is a variant of the multival-
ued model MREM formed by two networks. The dynamics of each of these networks
depends on the outputs of the other network, and they are updated alternatively, to reach
an equilibrium state corresponding to a local minimum of the common energy function.

We have tested our model with the well-known 2PLCN problem from graph theory.
The proposed model avoids some of the drawbacks of other models in specialized lit-
erature, like the absence of convergence guarantees or the fine-tuning of parameters. In
addition, it does not need a preprocessing stage to obtain a good node ordering, since it
can be achieved dynamically.

By using some test instances, we have observed that our model is, at least, compara-
ble to the other models, and it is able to achieve, in many cases, better solutions.

Future research lines cover aspects such as developing new dynamics for the model
which could help to achieve better results. This model is also applicable when the node
line is not a straight line, it can be a circle, or another geometry. Moreover, this model
can also be used, with little modifications, to the k-pages book crossing problem, due
to the ability of MREM to work with multivalued neuron outputs.
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