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Abstract. In this work, a new stochastic method for optimization prob-
lems is developed. Its theoretical bases guaranteeing the convergence of
the method to a minimum of the objective function are presented, by us-
ing quite general hypotheses. Its application to recurrent discrete neural
networks is also developed, focusing in the multivalued MREM model,
a generalization of Hopfield’s. In order to test the efficiency of this new
method, we study the well-known Traveling Salesman Problem. Exper-
imental results will show that this new model outperforms other tech-
niques, achieving better results, even on average, than other methods.

1 The Neural Model MREM

A powerful generalization of Hopfield’s model appears in the works [11,12], where
the model MREM (Multivalued REcurrent Model) is presented. This model (in
its discrete version) presents two important characteristics which make it very
versatile and increase its applicability:

– The output of each neuron, si, is a value from the set M={m1, m2, . . . , mL},
which is not necessarily numerical. The state vector of the net is defined as
S = (s1, . . . , sN ).

– A new concept is introduced: a function f that measures the similarity be-
tween the outputs of the neurons. This is the so-called similarity function.
So, f(si, sj) represents the similarity between outputs of neurons i and j.
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Thus, the energy function of this model, which characterizes the behaviour of
the net, is as follows:

E(S) = −1
2

N∑

i=1

N∑

j=1

wi,jf(si, sj) +
N∑

i=1

θi(si) (1)

where W = (wi,j) is the synaptic weight matrix, representing the interconnection
strength between each pair of neurons, f is the similarity function, and θi : M →
R is a generalization of the thresholds of each neuron.

These characteristics make that certain optimization problems (including the
ETSP) have better representation in this model than in the case of the binary or
the bipolar model developed by Hopfield, as well as in other multivalued models.

It is clear that MREM generalizes Hopfield’s models (with outputs M =
{−1, 1} as well as M = {0, 1}), if we consider the similarity function given by
the product f(a, b) = ab.

This model has been successfully applied to several (combinatorial) optimiza-
tion problems, achieving very good results, which were better than the best
known results in literature [13,14,15].

The aim of this work is to present a technique that helps MREM (as well as other
optimization techniques) to escape from local minima, improving so its efficiency,
by means of a randomized technique that we call Stochastic Functional Annealing.

2 Stochastic Functional Annealing

The Functional Annealing method is designed to help optimization techniques
to avoid some local minima of the objective function. In this case, the objective
function F (defined over a discrete set V ) is substituted by a sequence of func-
tions {Fn} such that lim

n→∞Fn(x) = F (x) for all x ∈ V . Then, an optimization
technique is used to minimize each of the approximating functions Fn.

The point used as initial guess to minimize Fn+1 is the minimum of Fn, which
will be denoted as x

(n)
∗ . We iterate by using a stochastic algorithm which, under

certain hypotheses, will lead to the minimization of F , although the minimization
of Fn is not guaranteed.

This stochastic algorithm is as follows:

1. Begin with m = 1, n = 1.
2. Choose an initial guess x

(n)
1 , randomly (if n = 1), or by taking x

(n)
1 = x

(n−1)
∗

(if n > 1).
3. Select a point z ∈ V according to the law of probability Ps(z; x(n)

m ).
4. The update x

(n)
m+1 = z will be accepted with probability Pa(ΔFn), where

ΔFn = Fn(z) − Fn(x(n)
m ).

5. Repeat steps 3 and 4 until the acceptance of an update x
(n)
m+1. Let m = m+1.

6. If m ≥ K (for a fixed K), let x
(n)
∗ = x

(n)
K , m = 1 and n = n + 1 and return

to step 2.
7. If m < N , return to step 3.
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Thus, we obtain a sequence {x(n)
∗ } of points in V which are approaches to

the minima of the corresponding Fn. In the limit, we expect that this sequence
approaches a minimum of F .

Note that we are not making an infinite number of iterations in order to
minimize Fn. We make only a finite number of them, which implies, due to the
stochastic nature of the algorithm, that we are not arriving at the minimum of
Fn.

We must observe that there are several possible ways of sampling a point
z ∈ V . It does not need to be chosen completely at random. This sampling
can be made by taking into account the function values of all points in a cer-
tain neighborhood of x

(n)
m , and assigning to every point a probability which is

proportional to its increase of the function value.
In the next section we will impose some conditions to guarantee the mini-

mization of F .

2.1 Convergence Theorems

At least two hypotheses have to be imposed in order to obtain some results of
convergence:

Condition of Probabilistic Monotonicity
The next equality must hold

lim
n→∞ P

(
Fn(x(n)

m+1) > Fn(x(n)
m )

)
= 0

for all m ∈ {1, . . . , N − 1}.

Condition of Acceptance of the Update z = x
(n)
m+1

We consider the probability of acceptance of x
(n)
m+1 as

Pa(z) =
{

1, if ΔFn < 0
gn(ΔFn) < 1, if ΔFn ≥ 0

where gn : R
+ → [0, 1) and ΔFn = Fn(z) − Fn(x(n)

m ).

In addition, to simplify the algorithm, let us suppose the following condition:

Condition of Sampling in Neighbourhoods
Given x = x

(n)
m , we consider the probability of sampling a point z ∈ V given by

P(sampling z) = Ps(z) =
{

0, if z �∈ Nx

a(z) > 0, if z ∈ Nx

where Nx is a neighbourhood of x.

We must note that if the functional sequence {gn} tends to 0 uniformly, then
the condition of acceptance of z = x

(n)
m+1 implies that of probabilistic monotony.
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With these hypotheses in mind, we can get some technical results that guar-
antee the convergence of our algorithm to a minimum of F . However, due to the
limitation in the length of this paper, proofs for these results will be omitted.

The following technical results (lemmas, propositions and theorems) establish
some quite general conditions to ensure the convergence of our method. These
conditions are simplified in the particular case of discrete recurrent networks, in
the next section.

Theorem 1. With probability 1, there exists L such that

L = lim
n→∞Fn(x(n)

∗ ) = lim
n→∞F (x(n)

∗ )

Corollary 1. If ξ is an accumulation point of the sequence {x(n)
∗ }, then, with

probability 1, the next equality holds:

F (ξ) = lim
n→∞Fn(x(n)

∗ ) = lim
n→∞F (x(n)

∗ )

We now proceed to establish the optimality of the accumulation points of {x(n)
∗ }.

Theorem 2. Let z ∈ V with F (z) < L, where

L = lim
n→∞Fn(x(n)

∗ ) = lim
n→∞F (x(n)

∗ )

Then, there exists N ∈ N such that if n ≥ N then

Ps(z) · P

(
accept z = x

(n)
2

)
= 0

This technical result gives two interesting corollaries, dealing with the optimality
of the accumulation points of {x(n)

∗ }, and the convergence of this sequence.

Proposition 1. Let ξ be an accumulation point of {x(n)
∗ }. Then, we have F (ξ)≤

F (z) for all z ∈ Nξ. Therefore we can affirm that ξ is a local minimum of F .

Let us study the time required by this algorithm to visit, at least once, the global
optimum x∗.

Suppose that gn(ΔFn) ≥ δ > 0 for all n and for all possible ΔFn = Fn(y) −
Fn(x) with x, y ∈ V and that Ps(z; x) ≥ ρ > 0 for all z ∈ Nx, for all x ∈ V .

Let G = (V , E) be the graph given by V = V and the edge (x, y) ∈ E if, and
only if, x ∈ Ny.

Suppose that G is strongly connected, that is, given two nodes (points of V ),
there always exists a path (sequence of nodes) connecting them by means of
edges in E .

Let D be the diameter of the graph G, that is, the longest path between to
nodes of G.

Lemma 1. Under the above hypotheses, given a random initial guess x
(1)
1 ∈ V ,

the expected number of steps to visit x∗ is less than or equal to Dρ−Dδ1−D.
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Proposition 2. For all k > 0, our algorithm visits the global optimum x∗ in
less than kDρ−Dδ1−D steps with probability greater than 1 − 1

k .

But we can say more:

Proposition 3. For all k > 0, our algorithm visits the global optimum x∗ in
less than 2kDρ−Dδ1−D steps with probability greater than 1 − 2−k.

These results are applicable when the algorithm can use some memory to store
data, that is, the algorithm is able to remember the best solution up to the
current iteration (the best-solution-so-far).

When the algorithm has no memory, we look for other results proving con-
vergence.

For the next results, which prove the convergence of the sequence {x(n)
∗ },

we need an additional hypothesis on {gn}, the sequence that appears in the
definition of the probability of acceptance.

Definition 1. A sequence {ϕn : [0,∞) → R} of functions converges ε-uniformly
to ϕ : [0,∞) → R if, for all ε > 0, the sequence {ϕn

∣∣
[ε,∞)} of functions restricted

to the interval [ε,∞) converges uniformly to ϕ
∣∣
[ε,∞) , that is, if

lim
n→∞ sup

t≥ε
|ϕn(t) − ϕ(t)| = 0

It is clear that if a sequence converges uniformly, it also converges ε-uniformly,
therefore it is a less restrictive hypothesis.

Proposition 4. If local minima of F are strict, {gn} converges ε-uniformly to
0, and ξ is an accumulation point of {x(n)

∗ }, then the next equality holds:

lim
n→∞ P

(
x

(n+1)
∗ = ξ|x(n)

∗ = ξ
)

= 1

But we can still specify a little more:

Corollary 2. Let us suppose that local minima of F are strict and that {gn}
converges ε-uniformly to 0. Let ξ be an accumulation point of {x(n)

∗ } and {x(nk)
∗ }

one subsequence of {x(n)
∗ } such that lim

k→∞
x

(nk)
∗ = ξ. Then

lim
k→∞

P(x(nk+1)
∗ = ξ) = 1

From this result we can deduce the convergence of the sequence {x(n)
∗ }.

Theorem 3. Let us suppose that local minima of F are strict and that {gn}
converges ε-uniformly to 0. Let ξ be an accumulation point of {x(n)

∗ }. Then

ξ = lim
n→∞ x

(n)
∗

Note that we have arrived at the strong convergence of the sequence {x(n)
∗ }, not

only convergence in probability, to ξ, which is a minimum of F .
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3 Application to Recurrent Networks

In this section, we will specify the previous results in the case in which the
optimization algorithm used to minimize each Fn is a recurrent neural network.
Therefore, we will consider energy functions such as the one given in Eq. (1) for
the MREM model.

3.1 Stochastic Functional Annealing Applied to MREM

Now, in order to minimize the energy function E given by Eq. (1), we will
consider a sequence of energy functions {En}, defined as in Eq. (2):

En(S) = −1
2

N∑

i=1

N∑

j=1

w
(n)
i,j f (n)(si, sj) +

N∑

i=1

θ
(n)
i (si) (2)

where {W (n) = (w(n)
i,j )} is a sequence of synaptic weights matrices verifying

that lim
n→∞ W (n) = W , {f (n) : M×M → R} is a functional sequence such that

the limit lim
n→∞ f (n)(x, y) = f(x, y) for all x, y ∈ M, and {θ(n)

i : M → R}n≥1

is a sequence of threshold (or bias) functions for neuron i, i = 1, . . . , N , which
converges punctually to θi, for all i.

Obviously, E(S) = lim
n→∞En(S) for each state vector S ∈ MN .

For every state vector S we define a neighbourhood NS such that the next
state of the net will be chosen from this neighbourhood.

Let us suppose that, to minimize En, we iterate and obtain S
(n)
m and make

a sampling in its neighbourhood to arrive at the state vector S. We define the
probability of acceptance of the update S = S

(n)
m+1 as follows (analogous to what

was made in the previous section):

Pa(S) =
{

1, if ΔEn < 0
gn(ΔEn) < 1, if ΔEn ≥ 0

where gn : R
+ → [0, 1) and ΔEn = En(S) − En(S(n)

m ).
Thus, for each n, given S

(n)
1 , we will obtain a finite sequence of state vectors

{S(n)
i }i=1,...,K , since we only iterate K times, to arrive at the state vector S

(n)
K

which will be denoted S
(n)
∗ , in order to keep the notation introduced in the

previous sections.
So, as a result of applying the previous technical results, we can affirm that:

Theorem 4. With the previous hypotheses, we have:

– There exists a value L which is the common limit of the sequences {En(S(n)
∗ )}

and {E(S(n)
∗ )}.

– If S∗ is an accumulation point of {S(n)
∗ }, then

E(S∗) = lim
n→∞En(S(n)

∗ ) = lim
n→∞E(S(n)

∗ )
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and, in addition, E(S∗) ≤ E(S) for all state vector S belonging to the
neighborhood NS∗ of S∗.

– If {gn} converges ε-uniformly to zero, and local minima of E are strict, then

S∗ = lim
n→∞S

(n)
∗

3.2 A Particular Case: The Stochastic MREM Model

If we consider En = E for all n, we arrive at a stochastic version of MREM.
This version, which will be called sMREM (stochastic MREM ), will converge

to a state of (local) minimal energy, since it is a particular case of the Stochastic
Functional Annealing, and it verifies the conditions of Probabilistic Monotonic-
ity, Acceptance of Updates and Sampling in Neighborhoods.

The main drawback of this model sMREM, with respect to its deterministic
version, is the amount of computational time needed to achieve that conver-
gence. However, this increase in the computational effort obtains its reward as
an increase in the quality of the solution, as we will see in the experimental
results.

4 The Euclidean Traveling Salesman Problem

The Euclidean Traveling Salesman Problem (ETSP) is a classical and very well-
known issue of study in the field of Operations Research, as well as in Artificial
Intelligence, since it has become one of the most popular benchmarks to test the
efficiency of optimization-related methods.

We can define this problem as follows: given N cities in the Euclidean space
X1, . . . , XN ∈ R

2 and distances di,j between each pair of cities Xi and Xj , the
objective is to find the shortest closed path that visits each city only once.

Real-life applications cover aspects such as automatic route planning for
robots, and hole location in printed circuits design [1], as well as gas turbine
checking, machine task scheduling or crystallographic analysis [2], among oth-
ers.

Despite the simplicity of this definition, this problem is one of the most typical
representatives of the complexity class of NP-hard problems, showing its high
level of difficulty in its resolution. Thus, there is need of algorithms to achieve
good approximations to the optimal solution with little time consumption.

For this reason, in addition to classical methods of Operations Research and
Optimization, several different algorithms have been developed, including genetic
algorithms [3], simulated annealing [4], taboo search [5], and neural networks [6].

Concerning neural networks, the main subject to deal with is to achieve a
good representation or formulation of the problem such that its resolution arises
as an energy function minimization problem.

In 1985, Hopfield and Tank [7] proposed the first neural network for the study
of combinatorial optimization problems (Hopfield’s analog model), which was
precisely used to solve this problem.
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This analog model has more ability to escape from local minima than the
discrete model. Some deficiencies are present in both models, as it is the need
to fine-tune a high number of parameters in the energy function, as mentioned
by Wilson and Pawley [8].

Other approaches are entirely based on Kohonen’s self-organizing maps [9],
achieving the best results with the so-called KNIES network [10], in which some
statistical measures were incorporated into the original model. This model also
presents the drawback of the fine-tuning of a high number of parameters to
achieve good results.

In the last few years, the multivalued model MREM has achieved very good
results, outperforming KNIES, and presenting the advantage of not needing any
adjustment of parameters, quite the opposite to KNIES.

5 The MREM Model for the Travelling Salesman
Problem

In order to solve the ETSP with this neural model, two identifications must be
made:

– A network state must be identified to a solution of ETSP
A solution of ETSP can be represented as a permutation in the set of numbers
{1, . . . , N}, where N is the number of cities, since it represents the order in
which cities are visited. For this reason, the net will be formed by N neurons,
each of them taking a value in the set M = {1, . . . , N}, such that the state
vector S = (s1, . . . , sN ) represents a permutation of {1, . . . , N} (a feasible
state). With this representation, si = k means that the k-th city will be
visited in i-th place.

– The energy function must be identified to the total distance of the
tour
If we make, in Eq. (1), f(x, y) = −2dx,y and

wi,j =
{

1 if (j = i + 1) ∨ ((i = N) ∧ (j = 1))
0 otherwise

then the energy function that we obtain is E(S) =
N−1∑

i=1

dsi,si+1 +dsN ,s1 , that

is, the total distance of the tour represented by the state vector S.

Computational dynamics is based in beginning with a random feasible initial
state vector and updating neurons outputs such that the state vector of the net
will always be feasible. To this end, in each iteration, a 2-opt [16,17,18] update
will be made over the current state vector. That is, every pair of neurons, p, q
with p > q + 1, is studied and the net checks for crosses between the segments
[sp, sp+1] and [sq, sq+1]. In that case, the next inequality holds:

dsp,sp+1 + dsq,sq+1 < dsp,sq + dsp+1,sq+1
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(a) (b)

pp

q

q p+1

p+1

q+1q+1

Fig. 1. An example of 2-opt iteration: (a) Original tour. (b) Tour modified by 2-opt
technique.

Then, the path from city sp+1 to sq is reversed (see Fig. 1), that is, if S is the
current state, the new state vector S′ will be defined as:

s′i =
{

sq+p+1−i if p + 1 ≤ i ≤ q
si otherwise

As an additional technique for improvement, 3-opt updates have also been
used: the tour is decomposed in 3 consecutive arcs, A, B and C, which are
recombined in all possible ways: {ABC, ACB, AB̂C, ABĈ, AB̂Ĉ, AĈB, ACB̂,
AĈB̂}, where Â, B̂, Ĉ are the arcs corresponding to the inversion of A, B,
and C, respectively. For example, if A = (8, 9, 4, 6), B = (1, 5, 3) and C =
(2, 7), then Â = (6, 4, 9, 8), B̂ = (3, 5, 1) and Ĉ = (7, 2), and the combination
AĈB̂ = (8, 9, 4, 6, 7, 2, 3, 5, 1). Note that {ABC, AB̂C, ABĈ, AĈB̂} are 2-opt
updates and there is no need to check them again.

The next state of the net will be the combination (chosen from the above list)
which decreases most the value of the energy function. For more details, please
refer to [12].

6 Functional Annealing for the Resolution of ETSP

In this section, several ways of applying Functional Annealing to ETSP are
considered. In each of them we will try to introduce some kind of knowledge
about the problem in its resolution, that is, this knowledge will be present in
the construction of the sequence {En}.

We will represent this knowledge by means of a transformation of the distances
between each pair of cities, that is, we will consider approximating energy func-
tions as in Eq. (2), with W (n) = W for all n, and f (n)(x, y) = −2d

(n)
x,y. The

introduction of these functions d
(n)
x,y will intensify the fact that cities close to
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m
m

M

M
m
m

(a) (b)

Fig. 2. Graphical representation of the proposed d
(n)
x,y: (a) for FA1, (b) for FA2

each other should be visited consecutively, and that cities which are far away
from each other should not. Thus, energy function En defined in this way will
represent the total distance of the tour associated to the corresponding state
vector, but with different measures of the distances between cities.

For simplicity, only a finite number of En will be considered: E1, E2, . . . , EL,

EL+1 = E. Let us define a pair of sequences {En} (it suffices to define d
(n)
x,y)

which introduce some of this knowledge in the resolution:

– The first approach will be called FA1: In this case, d(n) is defined as

d(n)
x,y =

{
dx,y, if dx,y ≤ θn

M, otherwise

where θn = m + (n − 1)(M − m)
L , and m and M are, respectively, the min-

imum and maximum values of dx,y for x �= y.
This election of d(n) makes the algorithm order cities which are close to
each other, giving no importance to cities that are far away. That is, in the
first few iterations, a partial ordering is induced in the neighborhood of each
city. As the neighborhood expands, this series of partial orderings becomes
less partial, generating inductively a total ordering that usually represents a
better tour in terms of total distance.

– The second approach (FA2), consists in defining

d(n)
x,y =

{
0, if x ∈ VL−n+1(y) ∨ y ∈ VL−n+1(x)
dx,y, otherwise

where Vm(Xk) is the set formed by Xk and the m nearest cities to Xk, such
that V0(Xk) = {Xk}.
This means that, in the first iterations, the model will try to build a global
ordering, not focusing in cities that are close to each other, but achieving a
rough ordering that can be refined in the following iterations, by taking into
account distances between cities close to each other.
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In fact, these techniques can help to avoid certain local minima of the energy
function E, since the objective function to minimize in each step is En, allowing
the net to increase temporarily the value of the original energy function.

A graphical representation of d(n) for these two techniques FA1 and FA2 can
be found in Fig. 2.

7 Experimental Results

Our algorithm has been tested with a wide set of ETSP instances. These in-
stances come from the well-known repository TSPLIB, available on the world
wide web and created by Reinelt [19,20]. One of its most important features is
that every instance has a record with the distance of the optimal tour, allowing
to compare the relative efficiency of our algorithms with respect to MREM. It
must be noted that MREM results are better than those of KNIES [12].

Experimental results are shown in Tables 1 and 2. 25 independent executions
were made for each instance. The quality measure used in these tables is the
percentage of error over the optimum, that is, to compare two results we use
their respective relative errors, given by (in percentage):

error =
(Best or average) tour length − Opt

Opt
· 100

We have tested the sMREM model and Functional Annealing with dynamics
FA1 and FA2. The acceptance function gn considered takes the following form:
gn(Δ) = exp

(−Δ
Tn

)
, where Tn is a ‘temperature’ parameter, converging to 0,

what makes {gn} converge ε-uniformly to 0.
Since we only use a finite number of approximating energy functions, we can

consider that the temperature parameter Tn decreases linearly from T1 = 1 to
TL = 0 and K = 20 iterations for each value of the temperature.

The parameter L takes the following values:

– L = 20 for sMREM and FA1, L = 5 for FA2, whose results are shown in
Table 1.

– L = 40 for sMREM and FA1, L = 10 for FA2, whose results are shown in
Table 2.

We must also specify the way the next state of the net is sampled:

– The increase of energy corresponding to each of the states which are in the
neighborhood of the current state, S, is computed.

– The probability of sampling the state S′ ∈ NS is proportional to the expo-
nential of the opposite of its increment of energy, divided by the temperature

at that iteration: Ps(S′) ∝ exp(−ΔS,S′

Tn
).

Once the next state is sampled, it is accepted or not depending on the prob-
ability of acceptance Pa, which is defined in terms of gn.
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When n = L, the next iteration (n = L+1) does not use a stochastic dynamics,
so it is the 2-opt (or 3-opt) mentioned before.

Regarding solution quality, we can observe in Tables 1 and 2 that the for-
mulation that gets the best results is FA1, achieving the best average results in
almost every test instance, showing its ability to escape from local minima. This
fact can also be observed by comparing the optimal results of these methods.

It must be noted that results obtained by KNIES were achieved by means
of a trial-error process, since this algorithm has to fine-tune a high number of
parameters.

In columns labeled ’t’ in these tables, we can check that the time consumption
is not a drawback in this case, since there are instances in which FA2 is, at
least, as fast as MREM and FA1 does not represent a high increase of time
consumption. This kind of ‘acceleration’ comes from the fact that Functional
Annealing gets good solutions in the first iterations. Then, since Fn is very close
to F in the last iterations, these good solutions are actually good approximations
of the final solution, and the algorithm hardly iterates.

8 Conclusions

In this work we have studied an optimization technique, Functional Annealing,
based on stochastic searches that can help to avoid certain local minima of the
objective function. This technique also allows us to introduce some knowledge
about the problem in its resolution.

We have proposed the theoretical results on which the algorithm is based.
These results prove the convergence of Functional Annealing to a local minimum
of the objective function.

We have used the proposed techniques to solve the well-known Traveling Sales-
man Problem. With these methods, we eliminate long paths in the tour, at the
same time that crosses are avoided. Not eliminating those long paths is the main
cause of the local minima in which an optimization algorithm may get trapped.

The proposed algorithms outperform, in most cases, results obtained by
MREM, without a great increase of time consumption.
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