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Abstract

The aim of this work is to present a segmentation method
to detect moving objects in video scenes, based on the use of
a multivalued discrete neural network to improve the results
obtained by an underlying segmentation algorithm. Specif-
ically, the multivalued neural model (MREM) is used to de-
tect and correct some of the deficiencies and errors off the
well-known Mixture of Gaussians algorithm. Experimental
results, using video scenes publicly available from the In-
ternet, show an increase of the visual quality of the segmen-
tation, that could improve for subsequent analysis phases,
such as object tracking or behavior studies.

1 Introduction

The aim of moving object segmentation is to separate
pixels corresponding to foreground from those correspond-
ing to background. The increasing resolution of video se-
quences, and continuous advances in video capture and
transmission technology, make segmentation a complex
task.

Some works [3, 9, 10] propose the creation of a back-
ground approximation by averaging the images over time.
This process of modeling the background by comparing
several frames in a video sequence, usually referred to as
background subtraction, is one of the standard methods for
video object detection. These methods are quite effective
in scenes where objects move continuously, whereas they
lack robustness when many moving objects are present in
the sequence, particularly if they move slowly.

Wren et al. [18] used a multiclass statistical represen-
tation based on Gaussian distributions, in which the back-
ground model is a single Gaussian distribution per pixel. A
modified version modeling each pixel as a mixture of Gaus-
sians (MoG) was proposed by Stauffer and Grimson [17].
This statistical approach is robust in scenes with many mov-
ing objects and light changes, and it is one of the most cited
techniques in the literature.

The aim of this work is to present the use of a multi-
valued neural model (MREM) [12] to enhance the segmen-
tation result obtained by other specialized algorithms, by
avoiding some of the undesirable effects of them. Partic-
ularly, we propose the hybridization of this MREM model
and the Mixture of Gaussians algorithm, since the neural
model is able to optimize the segmentation obtained by the
latter method.

One of the advantages of using neural networks for deci-
sion and optimization problems [7] is that all process units
(neurons) compute the solution to the problem in parallel.
This means that more complex problems can be solved, due
to the use of more efficient algorithms.

Another interesting feature of the multivalued neural
model studied in this work is its ability to represent non-
numerical classes or states, very useful when dealing with
image segmentation problems, in which pixel states are
usually defined with qualitative labels: {foreground, back-
ground, shadow}.

In addition, since many of the segmentation algorithms
are pixel-oriented, that is, they study the most probable class
of each pixel separately, the use of a neural network helps
to introduce some information on the neighborhood of each
pixel to get a smooth segmentation.

The remainder of this paper is structured as follows: in
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section 2, the problems of using a pixel-level segmentation
technique are presented, along with the description of the
Mixture of Gaussians algorithm. Later, in section 3, the
multivalued neural model MREM is described, as well as
its use to improve the segmentation results obtained by Mix-
ture of Gaussians. Some experimental results are shown in
section 4. To end with, in section 5, some conclusions and
future work regarding the topic of this work are presented.

2 The Problem of Pixel Segmentation

Many works related to background subtraction are based
on modeling each pixel of the image by using a statistical
model [18, 17]. The first objective of these methods is to
extract moving objects from the background.

One of the most cited techniques is the Mixture of Gaus-
sians (MoG) introduced by Stauffer and Grimson [17], in
which each pixel in the scene is modeled by means of a
weighted sum (mixture) of K Gaussian distributions. This
algorithm is considered as a pixel-level method. Different
Gaussians are assumed to represent different regions of the
RGB color space. Let us briefly explain this method.

The probability that a certain pixel has a value Xt =
(Rt, Gt, Bt) at frame t, can be written as

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, µi,t,Σi,t)

where ωi,t is an estimate of the weight of the i-th Gaussian
in the mixture at time t, µi,t and Σi,t are the mean value
and covariance matrix of the i-th Gaussian in the mixture at
time t, and η is a Gaussian probability density function:

η(X,µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (X−µ)T Σ−1(X−µ) (1)

where n is the dimension of the input space, that is, the
number of components of X (in this case, n = 3), and |Σ|
represents the determinant of matrix Σ.

By assuming that, for each distribution, red, green, and
blue values are independent and have the same variances,
Σi,t = σ2

i I , an approximation of the posterior probability
η(Xt, µi,Σi) is used to reduce the time complexity of the
algorithm.

We say that pixel color, Xt, at time t, is represented by
the i-th Gaussian distribution in the mixture (or, for sim-
plicity, that the distribution matches the pixel value) if the
match value Mi,t = |Xt−µi,t|

σi,t
verifies Mi,t < 2.5, that is,

the current RGB vector of the pixel lies within 2.5 standard
deviations of distance from the mean of the Gaussian distri-
bution.

After a match is done, the weight of each distribution
matching the pixel value is updated by using the equation

ωi,t = (1− α)ωi,t−1 + α(Mk,t)

for a given value of α, the learning rate, usually decreasing
to small fixed value.

If none of the K distributions matches the current pixel
value, the least probable distribution is replaced with a dis-
tribution with the current (R,G,B) value as its mean value,
and initially high variance, and low prior weight. In our
case, σ = 25 and ω is the less value of the weights of the
distributions.

The µ and σ parameters for unmatched distributions re-
main the same. The parameters of the distribution which
matches the new observation are updated as follows:

µi,t = (1− ρ)µi,t−1 + ρXt

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(Xt − µi,t)T (Xt − µi,t)

where

ρ =
αMi,t

ωi,t

This implementation is faster than the previously pro-
posed in [17].

After the update process, it is necessary to determine
which of the Gaussians of the mixture is most likely pro-
duced by background processes. A distribution is deemed to
be background with high probability if it occurs frequently
(high ω) and does not vary much (low standard deviation
σ). Therefore, the Gaussian distributions are sorted accord-
ing to this criterion:

ω1

σ1
≥ ω2

σ2
≥ . . . ≥ ωK

σK

The first B distributions are considered to belong to the
background model:

B = arg min
b

(
b∑

k=1

ωk > T )

where T represents the minimum weight that a set of dis-
tributions must have to be considered as background. The
rest of distributions are considered part of the foreground
objects.

In this work, we have used K = 3 Gaussian distribu-
tions to model each pixel color space. These 3 distributions
represent background, foreground objects and shadows.

In order to identify and remove moving shadows, we
need to consider a colour model that can separate chromatic
and brightness components. This can be done by compar-
ing non-background pixels against the current background
components. If the difference in both chromatic and bright-
ness components is within some threshold, the pixel is con-
sidered as a moving shadow. We use an effective compu-
tational color model similar to the one proposed in [8] to
fulfill these needs.
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Despite the good segmentation results obtained by ap-
plying MoG in each scene, a large amount of spurious ob-
jects are detected, mostly, due to the fact that no relation
with the neighborhood of each pixel is taken into account
to obtain these objects in motion. Post processing methods
such as morphological operators are used to avoid the dis-
advantages of this kind of pixel level techniques. However,
the input parameters for these methods depend on the scene
to analyze, therefore, the results will not be too satisfac-
tory if these fixed parameters are not optimally adjusted. To
solve this situation and improve the segmentation results,
a new optimization technique, based on multivalued neural
networks, is developed in this work.

3 Multivalued Neural Network to Improve
Segmentation

In this section, the fundamentals of the Multivalued RE-
current Model (MREM) [12] are described. This discrete
neural network is a generalization of Hopfield’s model [6, 7]
and other binary and multivalued models, such as SOAR
[15] and MAREN [4].

3.1 The MREM Model

Let us consider a recurrent neural network formed by
N neurons, where the state of each neuron i ∈ I =
{1, . . . , N} is defined by its output vi taking values in any
finite setM = {m1,m2, . . . ,mL}. This set does not need
to be numerical. For example, M = {red, green, blue} or
M = {background, foreground, shadow}.

The vector V whose components are the corresponding
neuron outputs, V = (v1, v2, . . . , vn), is called state vector.
Associated to each state vector, an energy function, similar
to Hopfield’s, can be defined:

E(V ) = −1
2

n∑
i=1

n∑
j=1

wi,jf(vi, vj , i, j) +
n∑
i=1

θi(vi) (2)

where

• W = (wi,j) is the synaptic weight matrix, expressing
the connection strength between neurons.

• f : M×M × I × I → R is the so-called similar-
ity function, since f(vi, vj , i, j) measures the similar-
ity between the outputs of neurons i and j.

• θi : M→ R is the generalization of the biases θi ∈ R,
present in Hopfield’s model.

The aim of the network is to minimize the energy func-
tion (2), i.e., to achieve a stable state corresponding to a

local (global, when possible) minimum of the energy func-
tion, which is usually identified with the objective function
of the problem to solve.

The introduction of the similarity function f makes the
network very versatile and usually causes a better represen-
tation of the problem at hand, see, for example, [14, 13, 11,
5]. It leads to a better representation of problems than other
multivalued models, as SOAR and MAREN [4, 15], since in
those models most of the information enclosed in the multi-
valued representation is lost by the use of the signum func-
tion that only produces values in {−1, 0, 1}.

Usually, the similarity function is defined only in terms
of vi and vj , but, in this work, we have decided to introduce
some information about pixel adjacency, by giving the in-
dices of the pixels (i and j). This information was proposed
in [14].

Many computational dynamics can be defined for this
model, that is, several neuron updating schemes are avail-
able provided the versatility of the network. This is
achieved by defining the input (synaptic potential) for neu-
ron p, up, as the opposite of the energy increase when neu-
ron p is updated, that is, up = −(∆E)p. If up > 0, then the
associated update reduces the value of the energy function.
Otherwise, since no improvement is made by the update, it
is not done, and the net has converged to a stable state.

3.2 MREM Applied to Segmentation

In this paper, we propose the use of MREM to enhance
the segmentation obtained by other segmentation methods.
Particularly, MREM is used to improve the results achieved
by the Mixture of Gaussians method.

The pixel segmentation problem can be considered
as an optimization problem that can be solved by
MREM. In order to make this identification, we can
define the set of possible neuron states as M =
{background, foreground, shadow}, such that vi, the state
of neuron i, represents the class the i-th pixel is assigned to.

Several measures of the quality of the segmentation can
be defined [2]. In this work, we propose a new measure of
the quality, which corresponds to the objective function of
the associated optimization problem.

This objective function is defined in terms of the value
mj(k) which measures the fuzzy membership of pixel j to
class k ∈ {background, foreground, shadow}.

Typically, mj(k) is defined as:

mj(k) = η(xj , µj(k),Σj(k))

where µj(k) and Σj(k) are, respectively, the mean and the
covariance matrix of the Gaussian distribution associated to
class k at pixel j, and xj is the (R,G,B) vector of pixel j at
the current frame, and η is the Gaussian probability density
function defined in Eq. (1).
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Thus, the minimization problem can be stated as follows:

min
V ∈MN

∑
i

∑
j∈Ni

(
1− 2δvi,vj

)
mj(vj) (3)

whereNi represents the neighborhood of pixel i and δx,y is
Kronecker’s delta function. The use of a neighborhood for
each pixel allows to obtain smooth segmentations.

The optimal solution to this problem is achieved when a
pixel is assigned to the most probable class (in terms of the
weighted membership value) of pixels in its vicinity. For
example, if the sum of weighted membership values of pix-
els in class foreground is greater than that of the pixels in
any of the two remaining classes, then the current pixel is
assigned to the class foreground.

With the objective function given in (3), the obtained
segmentation is smoother and presents less spurious objects
than the original MoG algorithm.

The identification of this objective function with the en-
ergy function of MREM, given in (2), allows us to define
the model parameters:

wi,j =
{
−2, if j ∈ Ni
0, otherwise

f(x, y, i, j) = (1− 2δx,y)mj(y)
θi ≡ 0 ∀i

For this problem, a parallel dynamics have been con-
sidered in which only one neuron is updated at each iter-
ation. Every neuron computes, in parallel, the synaptic po-
tential (i.e., the decrease of energy) obtained when changing
its current state to each of the 3 possibilities {background,
foreground, shadow}.

Let us note that, since MREM is used as an improve-
ment of the solution provided by the mixture of Gaussians,
the initial configuration of the network (i.e., the initial state
vector) corresponds to the mentioned solution. Then, this
solution is updated iteratively with the purpose of minimiz-
ing (3).

Suppose that neuron i is in state vi = k. The expression
of the synaptic potential, when updating the neuron state to
k′, is:

Ui(k, k′) = 2
∑
j∈Ni

mj(vj)
(
δk,vj

− δk′,vj

)
+

+(2nk − n)mi(k)− (2nk′ − n)mi(k′)

where n is the number of elements in the neighborhood of
pixel i, and nk and nk′ are the number of pixels in this
neighborhood in classes k and k′, respectively.

Only the neuron i achieving the greatest synaptic poten-
tial Ui(vi, k′) is updated to state k′. This ensures that the
solution provided by the MREM network is a minimum of
the energy function, that is, a solution to the segmentation
problem, as proposed.

4 Experimental Results

The proposed optimization technique has been applied to
a set of test sequences to show the validity of our method.
These sequences have been recorded in our laboratory or
downloaded from the Internet [1], with diverse kind of light-
ing to distinct objects in motion (people, vehicles) in or-
der to conduct a more comprehensive study of the proposed
method.

The criterion we use to determine the quality of the seg-
mentation result is the absence of noisy or spurious objects,
as well as object convexity, since these features are very im-
portant in subsequent processes, such as object tracking and
behavior analysis.

Figure 1 shows the results obtained after applying MoG
and our neural approach to optimize the segmentation re-
sults in two different indoor scenes. The improvement on
Figures 1(e) and 1(f), with respect to the results of MoG in
1(c) and 1(d), is notable. Spurious objects are detected and
removed and more convex-shaped objects are detected, thus
obtaining better results.

A good object segmentation after applying the shadow
detection module is assumed, for the neural optimization
technique to obtain noteworthy results.

Figure 2 shows an example result on one PETS 2001
(IEEE Performance Evaluation of Tracking and Surveil-
lance Workshops) outdoor sequence, in which the obtained
objects are perfectly segmented and suitable as input of the
next tracking phase.

5 Conclusions and Future Work

In this work, we have presented a hybrid method to de-
tect moving objects in video sequences.

First, a specialized algorithm for segmenting the image
is used, and then a multivalued neural model is applied to
enhance the segmentation results provided by the first algo-
rithm. This neural model allows the use of qualitative labels
as neuron states, which permits a better representation of the
problem.

In our case, the segmentation algorithm is based on the
Mixture of Gaussian distributions model proposed by Stauf-
fer in [16]. The initial configuration of the multivalued
MREM model is set to the segmentation given by this algo-
rithm, and the network iterates to obtain a local minimum
of its energy function, measuring the quality of the segmen-
tation.

Experimental results show that the solution proposed by
our method is able to detect and correct some of the unde-
sirable effects of common segmentation methods (such as
noise, spurious objects...), giving a much clearer segmented
image. This fact is beneficial for typical subsequent pro-
cesses such as object tracking and behavior analysis.

616



(a) (b)

(c) (d)

(e) (f)

Figure 1. Results of applying our approach in
several frames. (a) and (b) show the captured
frames for each indoor scene in raw form;
(c) and (d) show results using MoG; (e) and
(f) show the final segmentation after applying
our neural approach.

In future works, we expect to improve this model by
introducing a feedback process between the neural model
MREM and the Mixture of Gaussians algorithm. With this
improvement, the statistical model of the pixel color space
can be better estimated. Thus, better segmentation results
are expected.
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