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Abstract

In this work, we propose the use of a multivalued recur-
rent neural network with the aim of graph drawing. Par-
ticularly, the problem of drawing a graph in two parallel
lines with the minimum number of crossings between edges
is studied, and a formulation for this problem is presented.
The neural model MREM is used to solve this problem. This
model has been successfully applied to other optimization
problems. In this case, a slightly different version is used, in
which the neuron state is represented by a two dimensional
discrete vector, representing the nodes assigned to a given
position in each of the parallel lines. Some experimental
simulations have been carried out in order to compare the
efficiency of the neural network with a heuristic approach
designed to solve the problem at hand. These simulations
confirm that our neural model outperforms the heuristic ap-
proach, obtaining a lower number of crossings on average.

1 Introduction

In the last few years, several graph representation prob-
lems have been studied in the literature. Most of them are
related to the linear graph layout problem, in which the ver-
tices of a graph are placed along a horizontal “node line”,
or “spine” (where K half-planes or pages intersect) and
then edges are added to this representation as specified by
the adjacency matrix. The objective of this problem is to
minimize the total number of crossings (adding over all K
pages) produced by such layout.

Some examples of problems associated to linear graph
representation are the bandwidth problem [1], the book
thickness problem [8], the page-number problem [2, 11],
the boundary VLSI layout problem [20], the single-row
routing problem [17] and automated graph drawing [19].
Another important application is the design of printed
circuit boards [18], since, for the case of non-insulated

wires, overlapping wires between electrical components
may cause short circuits and thus may be avoided as much
as possible.

Several authors study a restricted version of this problem
in which the vertex order is predetermined and fixed along
the node line, and edges are drawn as arcs in one of the
pages [3].

The problem studied in this work is a variant of the linear
graph layout problem discussed above. In our case, graph
nodes are distributed along two parallel straight lines, and
edges can be drawn between nodes in the same line or in
different lines.

This problem has been studied in a different version by
Giacomo et al. [4]. In that work, authors studied the partic-
ular case in which the graph to be represented was bipartite,
although the representation could be done in two parallel
convex curves (not necessarily straight lines).

In this work we present a neural model designed to solve
this problem. The optimal node location is computed by the
model, with the aim of minimizing the number of crossings
that appear in the graphical representation. A previous ver-
sion of this model was used to solve the K-pages crossing
number problem [9].

Our model is a variant of the multivalued MREM model
which has obtained very good results when applied to other
combinatorial optimization problems [13, 15, 14, 10], guar-
anteeing the convergence to local minima of the energy
function, identified with the objective function of the op-
timization problem.

The remainder of this work is structured as follows: in
Sec. 2, the 2-Lines crossing problem is detailedly formu-
lated. Later, in Sec. 3, the neural model used in this paper
is described, as well as its application to solve the problem
at hand. In Sec. 4, we show some experimental results for
this problem. Finally, in Sec. 5, conclusions to this work
are presented.
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Figure 1. Conditions on i, j, k and l to pro-
duce crossings: 1(a) i < k < j < l and 1(b)
i < k and l < j.

2 Drawing Graphs in Parallel Lines

Let us consider a graph G = (V , E) with V = {vi : i =
1, . . . , N} the set of nodes, and E = (ei,j) is the adjacency
matrix, such that ei,j = 1 if, and only if, edge (vi, vj) is
present in the graph.

The objective of the 2-Lines Crossing Problem (2LCP)
is to find the optimal location of graph nodes into two par-
allel straight lines minimizing the total number of crossings
produced.

This problem is similar to the 1-page graph layout prob-
lem, since crossings between edges corresponding a nodes
represented on the same line must be taken into account.
The difference in this case is that crossings can be produced
between edges with end-points in different lines. In Fig. 1,
situations leading to crossings are graphically represented.

In order to count the number of crossings, we must first
define some variables: Let v1(i) and v2(i) be the nodes lo-
cated at position i in lines 1 and 2, respectively, for all i.
For simplicity, and without loss of generality, assume that
i ∈ {1, . . . , N}. If no vertex is assigned to a location, let us
denote v1(i) = N + 1 or v2(i) = N + 1, as needed.

The augmented adjacency matrix E is defined as

E =
( E 0N×1

01×N 01×1

)

to express that the “virtual” node N + 1 is not connected
to the rest of vertices. For simplicity, let us denote the ele-
ments of this matrix as ei,j .

The use of the virtual node N + 1 allows to change the
number of nodes allocated in each of the parallel lines, if
needed. Since the number of vertices in each line is not
necessarily kept constant, the solution to the problem can
be improved more easily.

Intra-line Crossings: Let us consider 4 positions in one
of the node lines, verifying 1 ≤ i < k < j < l ≤ N ,
where locations i, j, k and l are assigned to nodes vs(i),
vs(j), vs(k) and vs(l). Then, edges (vs(i), vs(j)) and
(vs(k), vs(l)) (if both exist) cross each other (s ∈ {1, 2}).

Thus, the total number of intra-line crossings is:

Cintra =
∑

s∈{1,2}

N∑
i=1

∑
k>i

∑
j>k

∑
l>j

evs(k),vs(l)evs(i),vs(j)

(1)

Inter-lines Crossings: A crossing is produced between
edges (v1(i), v2(j)) and (v1(k), v2(l)) if, and only if, i < k
and l < j.

The number of crossings, produced by this kind of edges,
is then:

Cinter =
N∑

i=1

∑
k>i

N∑
j=1

∑
l<j

ev1(k),v2(l)ev1(i),v2(j) (2)

The total number of crossings, produced by a given or-
dering of nodes in two lines, can be expressed in the follow-
ing terms, by adding up Eqs. (1) and (2):

C = Cintra + Cinter =

=
∑

s∈{1,2}

N∑
i=1

∑
k>i

∑
j>k

∑
l>j

evs(k),vs(l)evs(i),vs(j) +

+
N∑

i=1

∑
k>i

N∑
j=1

∑
l<j

ev1(k),v2(l)ev1(i),v2(j)

3 Multivalued Neural Model for Graph
Drawing

In this work, a multivalued recurrent neural network for
optimization is applied to solve the 2LCP.

This neural model, MREM (Multivalued REcurrent
Model) [12], consists in a series of multivalued neurons,
where the state of i-th neuron is characterized by its output
(Vi) that can take any value in any finite set M.

The state vector �V = (V1, V2, . . . , VN ) ∈ MN de-
scribes the network state at any time, where N is the num-
ber of neurons in the net. Associated with any state vector,
there is an energy function E : MN → R, defined by the
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expression:

E(�V ) = −1
2

N∑
i=1

N∑
j=1

wi,jf(Vi, Vj) +
N∑

i=1

θi(vi) (3)

where W = (wi,j) is a matrix, f : M × M → R is usu-
ally a similarity function since it measures the similarity be-
tween the outputs of neurons i and j, and θi : M → R is a
threshold function.

Note that, due to these definitions, the MREM model is
a generalization of Hopfield’s models [6, 7] and other mul-
tivalued models, such as SOAR [16] and MAREN [5].

Multiple dynamics can be defined for this neural model.
The usual deterministic dynamics consists in selecting a
group of neurons and update them in order to decrease the
value of the energy function.

In order to get 2LCP solved by MREM, we must identify
a network state to a solution, that is, a vector state must
represent the location of every node in each line.

To this end, define Vi = (v1(i), v2(i)) ∈ {1, . . . , N, N+
1}2 the state of the i-th neuron, where v1(i) and v2(i)
have the same meaning as in the previous section, i.e.,
Vi = (n1, n2) means that nodes n1 and n2 are located on
the i-th position on lines 1 and 2, respectively. If any of
n1 or n2 is N + 1, then the respective location is empty.
Note that, in this case, the possible states for a given neuron
are represented by a 2-dimensional discrete vector. This is
possible due to the use of the MREM network.

With this definition, the objective function to be mini-
mized by the network is C = Cintra + Cinter, as defined
above.

This objective function can be rewritten as an energy
function of the MREM model (Eq. (3)). In order to do
so, define

ρi,j =
{

1, if j > i
0, otherwise

Then, we arrive at:

C =
∑

i

∑
j

∑
k

∑
�

(ρi,kρ�,jev1(k),v2(�)ev1(i),v2(j)+

+ρi,kρk,jρj,�

∑
s∈{1,2}

(evs(k),vs(�)evs(i),vs(j)))

From this, we can deduce expressions for:

wi,j = −2

f(Vi, Vj) =
∑

k

∑
�

(ρi,kρ�,jev1(k),v2(�)ev1(i),v2(j) +

+ρi,kρk,jρj,�

∑
s∈{1,2}

(evs(k),vs(�)evs(i),vs(j)))

and θi ≡ 0, for all i, j ∈ {1, . . . , N}.

The computational dynamics of the neural network to
solve the problem at hand consists on permuting the lo-
cation of two nodes (including the virtual N + 1 node)
with a random feasible initial configuration of the net-
work. That is, select (sequentially) s1, s2 ∈ {1, 2} and
i, j ∈ {1, . . . , N} with vs1(i) = n1 and vs2(j) = n2.
Then, the network studies the increase or decrease in the
number of crossings in the case of making vs1 (i) = n2 and
vs2(j) = n1. If the number of crossings is reduced, then
the update is done.

Note that there are two possible cases (the trivial case in
which vs1(i) = vs2(j) = N + 1 is excluded):

• Both vs1 (i), vs2(j) ≤ N . Then, the network studies
the permutation of the location of these two nodes.

• Only one of the nodes is the virtual node N +1. Then,
this dynamics is equivalent to change one node loca-
tion. In this case, the number of nodes assigned to
each of the lines may change, allowing to find a better
solution.

Observe that, with this dynamics, the state of the network
remains feasible along the iterations.

4 Experimental Results

In this Section we test the performance of our model and
compare it with a heuristic method, developed ad hoc for
this problem, for a test set formed by graphs belonging to
well-known graph families. Concretely:

• Graphs Kn,m, formed by two groups of nodes, one
of cardinality n and another with m. Each node of a
group is adjacent to every node in the other group.

• Circulant graph Cn(a1, . . . , ak), where 0 < a1 <
. . . < ak < n+1

2 is a graph with n vertices such
that vertex i is adjacent to vertices i ± a1, . . . , i ±
ak(mod(n)). The circulant graph Cn(a1, . . . , ak) has
n · k edges.

• Hipercubic graphs Hn, with 2n vertices, which are
numbered (in base 2) from 0 to 2n − 1 by using n
bits. There exist the edge (vi, vj) if, and only if, the
binary representations of these two nodes differ in just
one bit. This definition can be explained as follows:
vertices are the corners of a hypercube in dimension n,
and edges join neighboring corners.

The heuristic method used to compare results consists
in sequentially assign a location (in one of the 2 lines) to
each node (sorted according to a given criterion), such that
the number of crossings produced by inserting the node in
the representation is minimum. In order to produce better
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Graph MREM Heur1 Heur2
Min Av.

K5,5 16 16.24 40 40
K5,7 36 36.34 90 84
K5,9 64 64.28 160 144
K5,11 100 100.68 250 220
K5,13 144 144.96 360 312
K7,7 81 81 189 189
K7,9 144 144.24 336 324
K7,11 225 225.36 525 495
K7,13 324 324 756 702
K9,9 256 256.48 576 576
K9,11 400 400.24 900 880
K9,13 576 576.24 1296 1248
K11,11 625 625.4 1375 1375
K11,13 900 900.4 1980 1950
K13,13 1296 1296 2808 2808

Table 1. Results of the techniques proposed
in this work for Kn,m.

Graph MREM Heur1 Heur2
Min Av.

H3 0 0.76 5 5
H4 8 10.55 29 29
H5 74 96.16 168 168
H6 478 630.2 895 895

Table 2. Results of the techniques proposed
in this work for the hipercubic graphs Hn.

results, two strategies for sorting nodes have been consid-
ered: nodes can be sorted in decreasing (Heur1) or increas-
ing (Heur2) order of degree.

That is, given nodes vσ(1), . . . , vσ(N) (sorted according
to a permutation σ), first, assign node vσ(1) to line 1. At
step n, assign node vσ(n) to the line in which its insertion
produces a lower number of crossings, taking into account
only edges corresponding to nodes already assigned.

For each of the test graphs, 100 independent runs of our
neural model have been studied. Note that the heuristic ap-
proaches mentioned before always achieve the same solu-
tion. However, the MREM model, since its initial state is
randomly selected, may achieve better solutions.

The results of applying these techniques are shown in
Tables 1, 2 and 3.

In those tables, the minimum and average number of
crossings obtained in 100 runs of the neural model MREM
are shown, as well as the result of applying the heuristic
approach mentioned before, in its two variants, Heur1 and
Heur2. It can be observed that our neural model is able to

Graph MREM Heur1 Heur2
Min Av.

C22(1, 2) 0 4.53 2 2
C22(1, 2, 3) 24 32.89 30 30

C22(1, 3, 5, 7) 187 209.95 304 304
C24(1, 3) 9 14.4 24 24

C24(1, 3, 5) 65 82.69 133 133
C24(1, 3, 5, 7) 200 230.42 328 328

C26(1, 3) 11 16.96 20 20
C26(1, 3, 5) 72 89.88 134 134

C26(1, 4, 7, 9) 307 334.75 518 518
C28(1, 3) 12 18.84 24 24

C28(1, 3, 5) 78 100.63 129 129
C28(1, 2, 3, 4) 110 142.79 185 185

C28(1, 3, 5, 7, 9) 536 591.62 850 850
C30(1, 3, 5) 86 107.84 135 135

C30(1, 3, 5, 8) 265 325.27 431 431
C30(1, 2, 4, 5, 7) 423 461.22 635 635
C32(1, 2, 4, 6) 144 201.69 244 244
C34(1, 3, 5) 103 127.11 154 154

C34(1, 4, 8, 12) 299 365.51 834 834
C36(1, 2, 4) 45 83.41 82 82

C36(1, 3, 5, 7) 303 386.13 511 511
C38(1, 7) 42 59.9 106 106

C38(1, 4, 7) 165 206.3 231 231
C40(1, 5) 34 55.59 74 74
C42(1, 4) 28 52.91 42 42

C42(1, 3, 6) 122 171.06 223 223
C42(1, 2, 4, 6) 199 304.67 314 314
C44(1, 4, 5) 115 182.93 172 172

C44(1, 4, 7, 10) 535 655.58 801 801
C46(1, 4) 33 57.76 48 48

Table 3. Results of the techniques pro-
posed in this work for circulant graphs
Cn(a1, . . . , ak).

outperform the proposed heuristic, since the average num-
ber of crossings achieved by MREM is, in most cases, lower
than the obtained by the heuristic. Note that results for both
heuristic strategies are the same. There is no difference be-
tween both variants. However, experiments have been per-
formed with the heuristic algorithm in which nodes were
initially randomly sorted. In those experiments, the number
of crossings was much higher than with Heur1 and Heur2
(about 2 or 3 times higher).

A graphical representation of a solution for K3,5, with 4
crossings, is shown in Fig. 2.
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Figure 2. Result of drawing graph K3,5 in two
parallel lines.

5 Conclusions and Future Work

In this paper, the neural model MREM is used to solve
the problem of drawing a graph in two parallel lines with
the minimum number of crossings. The mathematical for-
mulation for this problem is also presented.

A new feature has been introduced in the neural model
proposed in this paper: the state of the i-th neuron is a two
dimensional vector representing the nodes located at the i-
th position in each of the parallel lines.

Experimental results show that MREM is able to outper-
form a heuristic approach designed ad hoc for solving the
problem at hand.

Further improvements are expected with a parallel im-
plementation of the neural network (observe that in this pa-
per, the dynamics of the network is sequential).

In addition, a generalization to the case in which there
are K > 2 parallel lines is under study, as well as other
possible layouts for graph drawing.
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titioning via recurrent multivalued neural networks. Lecture
Notes in Computer Science, 3512:1149 – 1156, 2005.

[15] E. Mérida-Casermeiro, J. Muñoz Pérez, and E. Domı́nguez-
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