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Abstract. This paper present a video segmentation method which separate pix-
els corresponding to foreground from those corresponding to background. The
proposed background model consists of a competitive neural network based on
dipoles, which is used to classify the pixels as background or foreground. Using
this kind of neural networks permits an easy hardware implementation to achieve
a real time processing with good results. The dipolar representation is designed
to deal with the problem of estimating the directionality of data. Experimental
results are provided by using the standard PETS dataset and compared with the
mixture of Gaussians and background subtraction methods.

1 Introduction

The aim of moving object segmentation is to separate pixels corresponding to fore-
ground from those corresponding to background. This task is complex by the increasing
resolution of video sequences, continuing advances in the video capture and transmis-
sion technology.

The process of background modeling by comparison with the frames of the sequence
is often referred to as background subtraction. These methods are widely exploited in
videos for moving object detection. Adaptive models are typically used by averaging
the images over time [1,2,3] creating a background approximation. While these method
are effective in situations where objects move continuously, they are not robust in scenes
with many moving objects, particularly if they move slowly.

Wren et al. [4] used a multiclass statistical representation based on Gaussian dis-
tributions, in which the background model is a single Gaussian per pixel. A modified
version modeling each pixel as a mixture of Gaussians is proposed by Stauffer and
Grimson [5]. This statistical approach is robust in scenes with many moving objects
and lighting changes, and it is one of the techniques most cited in the literature.

Several steps are required for a typical video surveillance system to reach the objec-
tive. At first, a video object segmentation method is required to obtain the objects in
motion of the stream. Subsequently, a tracking algorithm is applied to identify the ob-
jects in several frames of the sequence. A matching between each blob (or set of blobs)
and an object previously recognized has to be done. Finally, an algorithm to detect the
object behavior it is used to understand and analyze everything what it is happening in
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Fig. 1. A dipole is able to capture the intrinsic directionality of a set of data points

a scene. Therefore, low time complexity is required at the object segmentation stage in
order to carry out the entire process in real time.

In this work an unsupervised competitive neural network is proposed for object seg-
mentation in real time. The proposed neural approach is based on a dipolar represen-
tation in order to achieve a better representation of data since it is able to capture the
intrinsic directionality of data at a low computational cost. Although the mixture of
Gaussians model can obtain the directionality of data, the process of computing the
covariance matrix is highly expensive from the computational point of view. Thus, in
practice, it is usually assumed the independence of the RGB components, then all in-
formation relative to directionality is lost in this simplified model [6].

Dipolar competitive neural networks (DCN) [7] differ from traditional competitive
networks [8,9,10] in that every prototype wj is now represented by a segment formed

of two distinct vectors w
(1)
j and w

(2)
j . These two vectors represent the end-points of a

segment in the input space. Note that w
(1)
j and w

(2)
j can also be interpreted as the two

foci of an ellipsoid. The classical competitive learning rule can be applied to this model
to make this segment adjust to data, obtaining the directionality of patterns activating
that dipole (that is, patterns whose nearest dipole is the given one), see Fig. 1.

2 A Neural Model for Color Video Segmentation

In this work, a classification task is locally performed, for each pixel in the video se-
quence, in parallel. The classification algorithm used is a competitive network based on
dipoles.

Let us consider a DCN for each pixel in the video. Each of these networks models the
RGB space associated to the corresponding pixel, that is, training patterns are formed
by the three values (R,G,B) for the pixel.

The target of the network is to classify the input pattern (for the specified pixel) at
each frame as foreground or background. It can be noted that our model allows the use
of many neurons (also called dipoles in this particular case) to represent multimodal
classes. In our case, three neurons have been used to model the scene including both
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background and foreground. The B most activated neurons are used to model the back-
ground, whereas the rest of neurons correspond to foreground objects. This value B is
computed as the amount of neurons whose number of activations na1 , . . . , naB verify
na1+...+naB

N > T for a prefixed threshold T , where N is the total number of activations
of all neurons, as proposed in [6]. In this work, we have used T = 0.7.

The use of dipoles has an additional advantage for the classification task: the direc-
tionality of data is learned, thus obtaining extra information about the shape of clusters.

A detailed description of this model is presented in the next two subsections. There,
we study the activation of the winning dipole by defining an adequate synaptic potential
for each dipole, and the learning rule used to update each of the foci of the ellipsoids.

2.1 Definition of Synaptic Potentials

The computation of the synaptic potential received by each dipole is based on a crisp-
fuzzy hybrid neighborhood, which enables to define certain mechanisms that improve
the performance of the neural model.

For each neuron, there is a value rj , defining the crisp neighborhood of the corre-

sponding prototype wj = (w(1)
j , w

(2)
j ): Nj = {x : ‖x − w

(1)
j ‖ + ‖x − w

(2)
j ‖ ≤ 2rj}.

This definition corresponds to an ellipsoid whose foci are w
(1)
j and w

(2)
j and such that

the length of the main semi-axis is rj . Note that the main direction of the ellipsoid

corresponds to the direction of the dipole wj = (w(1)
j , w

(2)
j ).

The fuzzy neighborhood of neuron j is given by a membership function μj defined
over points not belonging to Nj , and taking values in the interval (0, 1). Usually, the
membership function present in this model is of the form:

μj(x) = e−kj

(
‖x−w

(1)
j ‖+‖x−w

(2)
j ‖−2rj

)
, for x �∈ Nj (1)

The items above provide us with a reasonable way to select the winning dipole for
each input pattern, which is the one to be updated at the current iteration, after the input
pattern is received by the network. We define the synaptic potential received by dipole j
when pattern x is presented to the network as hj(x) = 1 if x ∈ Nj and hj(x) = μj(x)
otherwise.

The winning dipole (with index denoted as q(x)) is the one receiving the maximum
synaptic potential: hq(x) = maxj hj(x).

To break ties (more common when two crisp neighborhoods, corresponding to dif-
ferent dipoles, are overlapped), we consider the dipole which has been activated more
times as the winning dipole. That is, if, for every j, nj counts the number of times
dipole j has been winner, and pattern x belongs to Nj1 ∩ Nj2 (overlapped neighbor-
hoods), then q(x) is defined as k for which nk = max{nj1 , nj2}. In case nj1 = nj2 , a
random dipole in {j1, j2} is selected as winner.

The use of this hybrid neighborhood allows us to better assign an input pattern to a
class:

– If input pattern x belongs to Nj , the network assumes that the best matching class
for x is the associated to dipole wj .
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Fig. 2. (a) Comparison between the synaptic potentials h1 and h2 of two dipoles, such that k2 >
k1, supposing r1 = r2 = r. (b) R represents the area of the input space well-represented by the
dipole.

– If input pattern x does not belong to any crisp neighborhood, its most likely class is
represented by the dipole achieving the maximum value of the membership func-
tion for this particular input.

The value of the parameter kj is related to the slope of the function. The higher its
value, the higher the slope is. For a great value of kj , the fuzzy neighborhood of wj will
be more concentrated around Nj . The effect (on the corresponding hj) of increasing
the value of kj is shown in Fig. 2(a).

With the help of this parameter, we can model a mechanism of consciousness, nec-
essary to avoid dead neurons. When a neuron is activated and updated many times, its
crisp neighborhood usually englobes a very high percentage of the patterns associated
to the neuron. In this case, patterns outside this neighborhood are not likely to belong to
the corresponding category. Thus, the membership function of the fuzzy neighborhood
should be sharp, with a high slope.

If a dipole, j, is rarely activated, then the ellipsoid Nj does not represent accurately
the patterns associated to the dipole. Thus, the membership associated to the fuzzy
neighborhood should express the actual fuzziness present in the data and therefore as-
sign higher values to patterns outside Nj .

From all this we can deduce that a good way to define kj is proportional to the
number of times that neuron j has been activated, nj .

2.2 The Learning Rule

In what follows, let us suppose that the winning dipole is w = (w(1), w(2)).
The purpose of the learning rule described in this section is to make each dipole, and

the associated ellipsoid, represent both the location and distortion (with respect to the
centroid of the dipole) of its corresponding data as accurately as desired.

Let us denote R = {x : ‖x − w(1)‖, ‖x − w(2)‖ < ‖w(1) − w(2)‖}. R denotes the
set of points whose distance to each focus is lower than the distance between foci. A
reasonable criterion to determine whether a given data point x is well-represented by
the ellipsoid, is that x ∈ R, see Fig. 2(b) for a graphical representation of this situation.
In this case, the dipole has just to be adjusted to better represent data location, trying to

minimize the distance from x to the dipole centroid w = w(1)+w(2)

2 , ‖x − w‖2.
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The updating scheme in this case, at iteration step t, is therefore:

w(i)(t + 1) = w(i)(t) + λ(x − w(t))

for i ∈ {1, 2}, λ being the learning rate parameter. This means that the centroid is

updated as follows: w(t + 1) = w(1)(t+1)+w(2)(t+1)
2 = w(t) + λ(x − w(t)) that is, the

ellipsoid is able to better capture the location of x.
When x �∈ R, the situation changes. It does not seem reasonable to update the dipole

as in the previous case. In this paper, we propose an updating scheme based on how
well points activating the dipole are represented by the latter.

To this end, let us define nin as the number of points activating the dipole that belong
to R at current iteration. Analogously, nout is the number of points activating the dipole
which do not belong to R.

A measure of how well points are represented by the dipole is given by the quotient
nout
nin

= ρ. Given c ∈ (0, 1], we say that the dipole represents accurately the data points
activating it if, at least, a 100c% of these points belongs to R, that is, c is the fraction
of points activating the dipole and belonging to R. This means that 100(1 − c)% of the
points does not belong to R, so ρ ≤ 1−c

c . Let us denote ρ0 = 1−c
c the maximum desired

value for ρ. Note that c is an user-defined parameter.
Then, there are two cases if x �∈ R:

– If ρ > ρ0, then there are many data points outside R comparing with the number of
points that belong to R, so the dipole does not represent well the dataset. In order
to improve this representation, the two foci will be updated towards the input data
x, as in the standard competitive learning rule:

w(i)(t + 1) = w(i)(t) + λ(x − w(i)(t))

for i ∈ {1, 2}.
– If ρ ≤ ρ0, then points are very well-represent by the ellipsoid, according to our

definition. Thus, it suffices to update the focus nearest to x, denoted by w(s(x)):

w(s(x))(t + 1) = w(s(x))(t) + λ(x − w(s(x))(t))

This transition allows to capture the actual directionality of data associated to the
dipole.

This complex updating scheme helps the network to reduce the dispersion of the data
points with respect to the dipole centroid.

On the other hand, our main concern is to detect the main directionality of data which
is given by the main direction of the dipoles. Empirical studies have revealed an under-
lying ellipsoidal structure of data in the RGB color space, with a clearly predominant
main direction. Since non-principal directions are not of importance in this problem we
consider the corresponding semi-axes fixed. Therefore, only rj , the major semi-axis, is
updated accordingly in each step.

3 Improving the Segmentation

In this work, we have studied two improvements of the segmentation process:
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Spurious Object Detection. In most real-life situations, some processes, such as
compression, decrease the sharpness of the video sequence. For this reason, many
objects consisting in a single and separated pixel are detected by segmentation
methods (spurious objects). To solve this issue, we propose the use of a post-
processing method, which consists in finding those isolated pixels representing
objects and marking them as background. After this process, for each of those
pixels, the corresponding dipole representing background is updated (by using the
proposed learning rule), whereas the dipole which had been updated (representing
foreground), returns to its state previous to the processing of the current frame.

Shadow Detection. Objects in motion probably cast shadow on the background, con-
fusing with foreground pixels and interfering the correct detection of the scene
objects. In our system, we develop the technique proposed in [11], based on the
proportionality property between the shadow and the background in the RGB color
space.

With these enhancements, we obtain better segmentation results, as will be shown in
next section.

4 Results

In this section a comparison between our proposed neural approach and other tech-
niques mentioned in the literature is done. We use different video sequences obtained
from Internet to demonstrate the effectiveness of our algorithm for background subtrac-
tion and foreground analysis in a variety of environments. These sequences also present
different features, from diverse kind of lighting to distinct objects in motion (people, ve-
hicles) in order to conduct a more comprehensive study of the proposed method. Note
that same parameters were used for all scenes.

Figure 3 shows the results obtained after applying the studied techniques. Our DCN
model is compared with the mixture of Gaussians model (MoG) [6] and with another
typical algorithm of background subtraction [3], consisting of subtracting the processed
frame from a background model previously computed. A fixed threshold value has been
established to get the objects segmented. In MoG we have set the number of normal
distributions to K = 3, the mean of each distribution is initially computed as the gray-
level value of the corresponding pixel in the first frame of the sequence, and the standard
deviation is initialized to 25.

In our neural approach, fine-tuning of the model initial parameters (number of
dipoles, learning rates, initial major semi-axis rj) is made before the segmentation

Table 1. Comparative analysis of the success rate among the studied methods for the sequence
observed in Fig. 4

Method % Matching % FP % FN

DCN+ 99.6957 0.07068 3.408
DCN 99.4387 0.2895 4.8602
MoG 98.7639 1.0967 1.3939
BS 98.6636 0.28041 30.1686
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(a) (b) (c) (d)

Fig. 3. Results of applying three segmentation methods to several frames. (a) column shows
the capture frames for each scene in raw form; (b) proposed method; (c) mixture of Gaussians
method; (d) background subtraction.

process. Three dipoles have been used to model the scene including both background
and foreground, although more dipoles can be added for a better representation of
multimodal backgrounds. The learning rate is decreased after each frame until stabi-
lizing at a fixed value, while the major semi-axis is initialized to 15. Both the sim-
ple model with neighborhoods (DCN) and the extended model (DCN+), in which a
mechanism to correcting the model and to avoid spurious pixels is applied, have been
tested.

Figure 3 shows an example result on one PETS 2001 (IEEE Performance Evaluation
of Tracking and Surveillance Workshops) sequence. A quantitative comparison among
the different algorithms is shown in Tables 1 and 2. Three measures have been defined to
evaluate the performance of each method. A false positive rate (FP) shows the number
of wrong background pixels and a false negative rate (FN) is used to show the number
of misleading foreground pixels. The success rate, indicating the accuracy of the cor-
responding algorithm, is presented in the column labelled ‘% Matching’. By observing
these results, it can be noted that in general, our method gets better segmentation than
the rest of analyzed methods, when we compare with a ground truth image. It is remark-
able the ability of our neural approach to efficiently adapt to diverse scenes, without any
modification of the mentioned parameters. Another comparison can be showed in Fig.
5 by using the intelligent room sequence, available at http://cvrr.ucsd.edu/aton/shadow.

Figure 6 shows the final result of our approach, after applying a shadow detec-
tion method and enhancing the obtained frame removing spurious objects. As we can
observe, this segmentation is effective enough to be used in a subsequent tracking
phase.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison among the studied techniques: (a) a frame obtained from the PETS01 se-
quence in raw form; (b) ground truth; (c) mixture of gaussians method; (d) background subtrac-
tion method; (e) DCN; (f) DCN+

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison among the studied techniques: (a) a frame of the intelligent room sequence;
(b) ground truth; (c) mixture of gaussians method; (d) background subtraction method; (e) DCN;
(f) DCN+
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Table 2. Comparative analysis of the success rate among the studied methods for the sequence
observed in Fig. 5

Method % Matching % FP % FN

DCN+ 98.9388 0.86961 6.7224
DCN 97.2409 2.5846 7.9157
MoG 87.9193 12.0628 12.6094
BS 95.4362 4.1031 18.1782

(a) (b) (c)

(d) (e) (f)

Fig. 6. Final results of the proposed method. In (a), (b) and (c) we can observe three frames (500,
750, 867) of a scene from PETS01 in raw form. (d), (e) and (f) show the segmentation results
using our neural approach (DCN+), after applying shadow detection.

5 Conclusions and Future Work

In this work a new competitive neural network based on dipoles for video object de-
tection and segmentation is presented. An unsupervised learning is performed to model
the RGB space of each pixel together with the directionality of data using a dipolar
representation.

The idea of using dipoles instead of a single point in the RGB color space permits
to obtain the direction of the input pixel data. In this sense, experimental results have
shown that the background model composed of ellipsoidal shapes (represented by the
dipoles) outperforms the accuracy of other methods.

The segmentation accuracy of the proposed neural network is compared to mixture
of Gaussian (MoG) and background subtraction (BS) models. In all the performed com-
parisons, our model achieved better results in terms of success rate and false positive
rate, whereas the false negative rate is, at least, comparable to the obtained by the other
studied methods.
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Moreover, the proposed algorithm can be parallelized on a pixel level and designed
to enable efficient hardware implementation to achieve real-time processing at great
frame rates.

Other applications of this model will be studied, including the incorporation of this
neural network to a remote sensing system performing people and vehicles tracking on
closed scenes.
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