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Abstract. A method to estimate the probability density function of
multivariate distributions is presented. The classical Parzen window ap-
proach builds a spherical Gaussian density around every input sample.
This choice of the kernel density yields poor robustness for real input
datasets. We use multivariate Student-t distributions in order to im-
prove the adaptation capability of the model. Our method has a first
stage where hard neighbourhoods are determined for every sample. Then
soft clusters are considered to merge the information coming from several
hard neighbourhoods. Hence, a specific mixture component is learned for
each soft cluster. This leads to outperform other proposals where the lo-
cal kernel is not as robust and/or there are no smoothing strategies, like
the manifold Parzen windows.

1 Introduction

The estimation of the unknown probability density function(PDF) of a con-
tinuous distribution from a set of input data forming a representative sample
drawn from the underlying density is a problem of fundamental importance to
all aspects of machine learning and pattern recognition (see [2],[11] and [14]).

Parametric methods make a priori assumptions about the unknown distri-
bution. They consider a particular functional form for the PDF and reduce
the problem to the estimation of the required functional parameters. On the
other hand, nonparametric approaches make less rigid assumptions. Popular
nonparametric methods include the histogram, kernel estimation, nearest neigh-
bour methods and restricted maximum likelihood methods, as can be found in
[4], [6] and [3].

The kernel density estimator, also commonly referred to as the Parzen window
estimator, [9], places a local Gaussian kernel on each data point of the training
set. Then, the PDF is approximated by summing all the kernels, which are multi-
plied by a normalizing factor. Thus, this model can be viewed as a finite mixture
model (see [7]) where the number of mixture components equals the number of
points in the data sample. Parzen windows estimates are usually built using a
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’spherical Gaussian’ with a single scalar variance parameter, which spreads the
density mass equally along all input space directions and gives too much prob-
ability to irrelevant regions of space and too little along the principal directions
of variance of the distribution. This drawback is partially solved in Manifold
Parzen Windows algorithm [15], where a different covariance matrix is calcu-
lated for each component. The covariance matrix is estimated by considering a
hard neighbourhood of each input sample. We propose in Section 2 to build soft
clusters to share the information among neighbourhoods. This leads to filter the
input noise by smoothing the estimated parameters. Furthermore, we use multi-
variate Student-t distributions, which have heavier tails than the Gaussians, in
order to achieve robustness in the presence of outliers ([10], [12], [16]).

We present in section 3 the mixture of multivariate Student-t distributions
which is learnt from the soft clusters. The asymptotical convergence of the pro-
posed method is formally proven in Section 4. We show some experimental re-
sults in section 5, where our method produces more precise density estimations
than the Manifold Parzen Windows and other approaches. Finally, Section 6 is
devoted to conclusions.

2 The Smooth Parzen Windows Method

Let x be a D-dimensional real-valued random variable and p() an arbitrary
probability density function over x which is unknown and we want to estimate.
The training set of the algorithm is formed by N observations of the random
variable. For each training sample xi we build a hard Q-neighbourhood Hi with
the Q nearest neighbours of xi, including itself. Hence Hi is interpreted as a
random event which happens iff the input belongs to that neighbourhood. The
knowledge about the local structure of the distribution around xi is obtained
when we calculate the mean vector μ and the correlation matrix R:

μ(Hi) = E[x|Hi] =
1
Q

∑

xj∈Hi

xj (1)

R(Hi) = E[xxT |Hi] =
1
Q

∑

xj∈Hi

xjx
T
j (2)

Now we present a smoothing procedure to merge the information from differ-
ent hard neighbourhoods. A soft cluster i is defined by a random event named
Si, which verifies when the input belongs to cluster i. Each hard neighbourhood
Hj contributes to Si with a normalized weight wij :

wij = P [Hj |Si] (3)

So, we have

∀i ∈ {1, 2, . . . , M} ,
N∑

j=1

wij = 1 (4)
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where the number of soft clusters M may be different from the number of hard
neighbourhoods N . We can infer the structure of the soft cluster by merging the
information from the hard neighbourhoods:

μ(Si) = E[x|Si] =
∑

j

P [Hj |Si]E[x|Hj ] =
N∑

j=1

wijμ(Hj) (5)

R(Si) = E[xxT |Si] =
∑

j

P [Hj |Si]E[xxT |Hj ] =
N∑

j=1

wijR(Hj) (6)

In order to define a multivariate Student-t distribution we need the estimation
of the covariance matrix C for each soft cluster:

C(Si) = E[(x − μ(Si)) (x − μ(Si))
T |Si] = R(Si) − μ(Si)μ(Si)T (7)

Finally, we need a method to determine the merging weights wij . We propose
two approaches:

a) If M = N , we can perform the smoothing by replacing the ’hard’ model
at the data sample xi by a weighted average of its neighbours ranked by their
distance to xi. Here the model at xi has the maximum weight, and their neigh-
bours xj have a weight which is a decreasing function of the distance from xi

to xj :

ωij = exp
(

− ‖xi − xj‖2

ψ2

)
(8)

wij =
ωij∑N

k=1 ωik

(9)

where ψ is a parameter to control the width of the smoothing. Please note that
ωii = 1.

b) We may use the fuzzy c-means algorithm [1] to perform a soft clustering.
This algorithm partitions the set of training data into M clusters so it minimizes
the distance within the cluster. The objective function is:

J =
M∑

i=1

N∑

j=1

mφ
ijd

2
ij (10)

where φ is the fuzzy exponent which determines the degree of fuzzyness, and
dij is the distance between training sample xj and the centroid of cluster i.
The degrees of membership of training sample j to soft cluster i are obtained as
mij , which can be regarded as the probability of training sample j belonging to
cluster i. In this approach the weights wij of the local models that we merge to
yield the model of cluster i are computed as follows:

wij =
mij∑N

i=1 mik

(11)
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3 Robust Density Model

Once we have the estimations of the mean vectors μ(Si) and covariance matrices
C(Si) for each soft cluster Si, it is needed to obtain a multivariate Student-t
distribution from them. First we define our probability model, which is a mixture
of multivariate Student-t distributions. Then we discuss how to make it learn
from the data.

3.1 Mixture Model

The proposed algorithm is designed to estimate an unknown density distribu-
tion p() from which the N samples of the training dataset are generated. The
generated estimator will be formed by a mixture of M multivariate Student-t
distributions, one for each soft cluster:

p̂(x) =
1
M

M∑

i=1

Ki(x) (12)

Ki(x) =
Γ (γi+D

2 )|Σi|−1/2

(
Γ (1

2 )
)D

Γ (γi

2 )γD/2
i

(
1 +

(x − μi)
T

Σ−1
i (x − μi)

γi

) γi+D

2

(13)

where Γ is the gamma function, D is the dimension of the training samples and
γi is the degrees of freedom parameter of the i-th Student-t kernel. We require
γi > 2 in order that both the mean and the covariance matrix exist.

3.2 Model Learning

As known [16], when γi > 1 the mean of the i-th Student-t distribution exists
and is μi. We estimate μi by the mean of the i-th soft cluster. On the other
hand, if γi > 2 then the covariance matrix exists and is given by γi(γi −2)−2Σi.
We estimate Σi with the help of the covariance matrix of the i-th soft cluster.
Hence we have:

μi = μ(Si) (14)

Σi =
(γi − 2)2

γi
C(Si) (15)

Finally we need to estimate the degrees of freedom parameter γi. Since there is
no closed formula to obtain its value (see [10]), we follow a maximum likelihood
approach here. We choose the value of γi which maximizes the log-likelihood of
the training set:

L =
N∑

j=1

log p̂(xj) =
N∑

j=1

log

(
1
M

M∑

i=1

Ki(x)

)
(16)

Wehave onlyM unknowns to optimize, namely γi, i = 1, . . . , M . So, themaximiza-
tion of L with respect to the γi’s is done by a standard method such as Levenberg-
Marquardt. The constraint γi > 2 is enforced for all i (see for example [5]).
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3.3 Summary

The training algorithm can be summarized as follows:

1. For each training sample, compute the mean vector μ(Hi) and correlation
matrix R(Hi) of its hard neighbourhood Hi with equations (1) and (2).

2. Estimate the merging weights wij either by the distance method (9) or the
fuzzy c-means algorithm (11).

3. Compute the mean vectors μ(Si) and covariance matrices C(Si) of each soft
cluster Si following (5) and (7).

4. Obtain the optimal values of the degrees-of-freedom parameters γi by max-
imizing the log-likelihood (16). Note that the parameters μi and Σi are not
subject to optimization, because they are computed by equations (14) and
(15), respectively.

4 Convergence Proof

In this section we prove that our estimator p̂() converges to the true density
function p() in the limit N →∞ and M →∞.

Lemma 1. Every local Student-t kernel Ki(x) tends to the D-dimensional Dirac
delta function δ(x − μ(Si)) as N →∞ and M →∞.

Proof. In the limit N → ∞ and M → ∞ the clusters Si reduce their volume to
zero. This means that γp

i → 0 for all i and p, where γp
i is the p-th eigenvalue of

the Mahalanobis distance matrix Σi. Hence the kernels Ki(x) are confined to a
shrinking volume centered at μ(Si), because the variances in each direction are
γp

i , but they continue to integrate to 1. So, we have that Ki(x) → δ(x−μ(Si)).
It should be noted that if we had allowed γi → 0, the tails of the kernels could
be so heavy that this property would have not hold, but this is not the case
because we require γi > 2.

Theorem 1. The expected value of the proposed estimation tends to the true
probability density function as N →∞ and M →∞.

Proof. The expectation is w.r.t. the underlying distribution of the training sam-
ples, which is the true probability density function p():

E[p̂(x)] =
1
M

M∑

i=1

E[Ki(x)] (17)

Since Ki(x) are independent and identically distributed random variables
we get

E[p̂(x)] = E[Ki(x)] =
∫

p(y)Ky(x)dy (18)

where Ky() is a multivariate Student-t centered in y. Then, by Lemma 1, if
N →∞ and M →∞ then Ky() shrinks to a Dirac delta:

E[p̂(x)] =
∫

p(y)δ(x − y)dy (19)
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So, the expectation of the estimation converges to a convolution of the true
density with the Dirac delta function. Then,

E[p̂(x)] → p(x) (20)

Theorem 2. The variance of the proposed estimation tends to zero as N →∞
and M →∞.

Proof. The variance is w.r.t. the underlying distribution of the training samples,
which is the true probability density function p():

var[p̂(x)] = var

[
1
M

M∑

i=1

Ki(x)

]
(21)

Since Ki(x) are independent and identically distributed random variables
we get

var[p̂(x)] = var
[ 1
M

Ki(x)
]

(22)

By the properties of variance and (18) we obtain

var[p̂(x)] =
1
M

(
E[(Ki(x))2] − E[Ki(x)]2

)
=

1
M

(
E[(Ki(x))2] − E[p̂(x)]2

)

(23)
By definition of expectation

var[p̂(x)] =
1
M

(∫
p(y) (Ky(x))2 dy − E[p̂(x)]2

)
(24)

where again Ky() is a multivariate Student-t centered in y. We can bound the
integral of the above equation with the help of (18), and so we get

var[p̂(x)] ≤ sup(N(·))E[p̂(x)]
M

→ 0 as N →∞ and M →∞ (25)

5 Experimental Results

This section shows some experiments we have designed in order to study the qual-
ity of the density estimation achieved by our method. We call it SmoothTDist
when the distance weighting is used, and SmoothTFuzzy when we use fuzzy c-
means. Vincent and Bengio’s method is referred as MParzen, the original Parzen
windows method (with isotropic Gaussian kernels) is called OParzen, and finally
the Mixtures of Probabilistic PCA model of Tipping and Bishop [13] is called
MPPCA. For this purpose the performance measure we have chosen is the av-
erage negative log likelihood

ANLL = − 1
T

T∑

i=1

log p̂(xi) (26)

where p̂() is the estimator, and the test dataset is formed by T samples xi.
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5.1 Experiment on 2D Artificial Data

We have considered two artificial 2D datasets. The first dataset consists of a
training set of 100 points, a validation set of 100 points and a test set of 10000
points, which are generated from the following distribution of two dimensional
(x, y) points:

x = 0.04t sin(t) + εx, y = 0.04t cos(t) + εy (27)

where t ∼ U(3, 15), εx ∼ N(0, 0.01), εy ∼ N(0, 0.01), U(a, b) is uniform in the
interval (a, b) and N(μ, σ) is a normal density. The second dataset is a capital
letter ’S’.

We have optimized separately all the parameters of the five competing models
with disjoint training and validation sets. The performance of the optimized
models has been computed by 10-fold cross-validation, and the results are shown
in Table 1, with the best result marked in bold. It can be seen that our models
outperform the other three in density distribution estimation (note that lower
is better).

Figures 1 and 2 show density distribution plots corresponding to the five
models. Darker areas represent zones with high density mass and lighter ones
indicate the estimator has detected a low density area.

Table 1. Quantitative results on the artificial datasets (standard deviations in paren-
theses)

Method ANLL on test set (espiral) ANLL on test set (capital ’S’)
SmoothTDist -1.0901 (1.1887) -1.9384 (1.2157)

SmoothTFuzzy -1.0880 (1.3858) -2.1176 (1.0321)
OParzen 1.0817 (1.3357) -0.6929 (0.4003)
MParzen -0.9505 (0.3301) -1.0956 (0.0657)
MPPCA 0.2473 (0.0818) -0.1751 (0.6204)

We can see in the plots that our models have less density holes (light areas)
and less ’bumpiness’. This means that our model represents more accurately the
true distribution, which has no holes and is completely smooth. We can see that
the quantitative ANLL results agree with the plots, because the lowest values
of ANLL match the best-looking plots. So, our model outperforms clearly the
other three considered approaches.

5.2 Density Estimation Experiment

A density estimation experiment has been designed, where we have chosen nine
datasets from the UCI Repository of Machine Learning Databases [8]. As before,
we have optimized all the parameters of the five competing models with disjoint
training and validation sets. The parameters for the density estimator of each
dataset have been optimized separately. Table 2 shows the results of the 10-fold
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Fig. 1. Density estimation for the 2D espiral dataset. From left to right and from top
to bottom: SmoothDist, SmoothFuzzy, OParzen, MParzen and MPPCA.

Table 2. ANLL on test set (lower is better). The standard deviations are shown in
parentheses).

Database SmoothTDist SmoothTFuzzy OrigParzen ManifParzen MPPCA
BrCancerWis -48.17 (2.48) 9.54 (1.68) 9.35 (1.51) 10.22 (1.50) 13.19 (0.99)

Glass -197.18 (72.35) -8.22 (4.90) -1.75 (5.87) -1.04 (5.74) -3.98 (6.24)
Ionosphere -21.92 (9.73) -8.01 (8.58) -15.68 (3.24) -14.83 (3.21) -1.21 (5.15)

Liver 17.53 (3.56) 21.41 (0.63) 20.27 (3.45) 21.09 (3.31) 22.25 (0.83)
Pima -304.37 (36.48) 27.95 (0.31) 32.21 (3.91) 32.85 (3.56) 29.87 (0.89)

Segmentation 65.96 (3.08) -71.22 (10.95) 51.18 (3.93) 51.97 (3.86) 18.77 (4.29)
TAE -2.57 (11.70) 7.59 (1.99) 8.17 (0.55) 9.09 (0.54) 11.98 (0.12)
Wine -59.84 (1.58) 62.78 (18.53) 29.16 (4.55) 31.14 (7.01) 18.98 (0.63)
Yeast -319.02 (22.86) -9.50 (0.34) -17.85 (0.33) -16.96 (0.31) -11.99 (0.31)

Fig. 2. Density estimation for the 2D capital ’S’ dataset. From left to right and from
top to bottom: SmoothDist, SmoothFuzzy, OParzen, MParzen and MPPCA.
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cross-validation, with the winning models in bold. Our two proposals show a
superior performance.

We have used the T-test to check the statistical significance of the difference
between the two best performing models for each database. We have considered
that the difference is statistically significant if we have less than 0.05 proba-
bility that the difference between the means is caused by chance. It has been
found that the difference is statistically significant for all the considered
databases.

6 Conclusions

We have presented a probability density estimation model. It is based in the
Parzen window approach. Our proposal builds local models for a hard neigh-
bourhood of each training sample. Then soft clusters are obtained by merging
these local models, and local multivariate Student-t kernels are introduced. This
allows our method to represent input distributions more faithfully than three
well-known density estimation models. Computational results show the superior
performance of our method.
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