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Abstract: - Isomorphism identification between graphs is an important NP-complete problem with many science 
and engineering applications. Although excellent progresses have been made towards special graphs, no known 
polynomial-time algorithm for graph isomorphism has been found for general graphs. In this paper a 
generalization of the Hopfield neural network for isomorphism identification between general graphs is 
proposed. Simulation results show that this model is much superior to recently presented neural networks for this 
problem. The effectiveness of the resultant network does not seem to be decreased as the size of the graph is 
increased. This allows us to solve graph isomorphism problems with a big number of vertices, while many 
recently presented approaches only present results for graphs with up to 15 vertices. 
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1   Introduction 
A lot of time and effort has been devoted to 
developing a reliable and computationally efficient 
technique for the detection of isomorphism among 
graphs. Applications of the graph isomorphism 
problem [1] include: cyclic sequential circuit, organic 
molecule structures, mechanical structures, etc. As 
recently pointed out [2], most published algorithms 
still leave a lot to be desired in different aspects, such 
as simplifying procedure of identification and 
adapting automatic computation. Recently proposed 
eigenvector approaches have attracted a lot of 
attention [2,3,4], since they are methods developed 
for automatic computation. However, all these 
recently published algorithms only present results for 
graphs with up to 15 vertices and do not report 
description of computation time. 
Neural networks are an alternative direction for graph 
isomorphism detection, since they allow parallel 
computation which may be needed when we have a 
big number of vertices in a graph. An example of this 
is the molecule DNA sequence in biotechnology. 
Besides, this kind of iteration-based approaches may 
provide a means to compare two graphs on an 
approximate basis which is useful in DNA sequence 
where hundreds of vertices are in a graph. Kong et al 

[5] presented a model for graph isomorphism 
detection based on the continuous Hopfield model 
[6]. Recently, we proposed a binary discrete neural 
network for this problem [7], showing that it is much 
superior to the previously presented network of Kong 
et al [5] in terms of the computation time and the 
interpretation of solutions. However, the 
effectiveness of the binary neural algorithm [7] 
decreases as the number of links is increased. In fact, 
we show in this paper that this binary neural approach 
requires a prohibitively long computation time to 
solve a graph isomorphic problem with 28 vertices. 
For this reason, in this work we apply a 
generalization of the Hopfield model [8], instead of 
the binary model, designing new computational 
dynamics to solve the graph isomorphism problem. 
Simulation results show that a test graph problem 
with 28 vertices is solved in seconds on a 
conventional PC. 
 
 
2   The Proposed Network for the 
Graph Isomorphism Problem 
In this section, a generalization of the Hopfield 
network presented in [8] is applied to solve the graph 
isomorphism problem. The proposed model is 
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characterized by the neuron outputs taking value in a 
discrete set, denoted by M={m1,m2,…,mL}. If vi is the 
state of neuron i, then vi ∈ M. Associated to each 
state vector V, an energy function, similar to 
Hopfield's, can be defined:    

   i, j i j i i
i j i

1E(V) w f (v ,v ) (v )
2

θ= − +∑∑ ∑  (1) 

where W=(wi,j) is the synaptic weight matrix 
(expressing the connection strength between 
neurons),  f:M×M→R is the so-called similarity 
function (since f(vi,vj) measures the similarity 
between the outputs of neurons i and j), and θi:M→R 
is the generalization of the biases θi ∈•, present in 
Hopfield's model. The aim of the network is to 
achieve a stable state corresponding to a global or 
local minimum of the energy function (1). This 
network is a generalization of the Hopfield's neural 
network since it includes this model as a particular 
case. It suffices to define M={0,1} (unipolar case) or 
M={1,1} (bipolar neurons), f(x,y)=xy and θi(x)= θix, 
being θi the threshold or bias used in Hopfield's 
model.  
Note that two graphs are said to be isomorphic if 
there exists a one to one equivalent relation between 
their vertices and edges that preserve the incidence. 
As demonstrated in [4], the graphs represented by the 
adjacency matrices A and B are isomorphic, if and 
only if B = PAPT, where P is an orthogonal 
permutation matrix such that PT=P−1. This operation 
matrix P has the feature that on each column and row 
there is only one element for 1 and all the others for 
0. Then, a solution of the graph isomorphism problem 
can be represented by a neuron state V with n 
elements that is a permutation of the rows and 
columns of the adjacency matrix A(nxn). Therefore, 
we consider M={1,2,…,n}, that is, only state vectors 
V representing permutations of the numbers 
{1,2,…,n} are the feasible states. This means that V 
is an abbreviate notation for the permutation matrix 
P=(pi,j) such that pi,j=1 if, and only if, vi=j, otherwise 
it is 0. With this notation, the permuted matrix will be 
A’= (

i jv ,va ). Given two graphs with adjacency 

matrices A and B, we define a new energy function to 
be minimized that can be expressed as a function that 
measures the differences between the permuted 
matrix A’ and B: 
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This energy function achieves its global minimum, 
E=0, when A’=B, that is, A and B represent 

isomorphic graphs. If we skip the constant term, and 
define the synaptic weights wi,j=2bi,j and the 
similarity function f(x,y)=ax,y, we obtain the 
identification between the energy function (1) and the 
objective function of the problem. With this 
identification, computational dynamics are proposed 
to solve the problem. Updating schemes must verify 
that network states are always feasible solutions, that 
is, permutations of {1,2,…,n}. Thus, we have 
considered that if neurons p and q are marked for 
updating, then vp’=vp(t+1)=vq(t), vq’=vq(t+1)=vp(t), 
and vi’=vi(t+1)=vi(t) for i≠p,q. The input (synaptic 
potential) of neuron p associated to this update is 

( )p,q i,p i,q
i

u ( E)=− Δ =− Δ +Δ∑ , where Δi,j=wi,j(f(vi,vj)-

f(vi’,vj’)). Particularly, Δi,p=2bi,p( i p i qv ,v v ,va a− ) for 

i≠p,q, and analogously for Δi,q. Note that Δp,q =0.  
Observe that a Hopfield-type network can only 
ensure that, if we reach the energy value E=0, then 
the two graphs are isomorphic. Then, a criterion must 
be applied to conclude that two graphs are non-
isomorphic. As in [5,7] we consider that if the 
network does not reach the value E=0 after Nmax 
iterations, this corresponds to two graphs that are not 
isomorphic. 
 
 
3   Simulation Results 
In this section we present results obtained by the 
proposed model. For comparison, we also present 
results given by the binary Hopfield model [7]. Both 
algorithms were implemented on a 3 GHz Pentium 
IV PC with 512 MBytes RAM by MATLAB. As case 
studies, we show in figure 1 some examples proposed 
in the recent bibliography to test methods developed 
for automatic computation in the graph isomorphism 
problem [3,9]. Table 1 presents the average 
computation time required by each algorithm to solve 
the test problems, where the results were obtained for 
a total of 1000 independent runs. Note that for the 
non-isomorphic test problem 1(b), the algorithm 
performs Nmax = 100 iterations since it is detected 
that the network does not reach E=0. Numerical 
results show that the proposed generalization of the 
Hopfield neural network is much superior to the 
binary model [7] in terms of the computation time for 
all the test problems. Observe that the proposed 
model takes an average time of 0.07 seconds to solve 
the selected example with 28 vertices, while the 
binary model requires a prohibitively long 
computation time. 
 

Table 1.  Comparison of the average 
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computation time needed for solving the test 

problems using the recently presented binary 

Hopfield model (BH) [7] and the proposed  

generalization of the Hopfield model (GH). 

 BH  GH 

Fig. 1 (a)  (isomorphic 
with 14 vertices) 87.1 s 0.03 s 

Fig. 1 (b)  (non-isom
graphs with 15 vertices) 217.41 s 1.17  s

Fig. 1 (c)  (isomorphic 
with 28 vertices) > 24  (hours) 0.07 s 

 
 
4   Conclusion 
In this paper we design a new generalization of the 
Hopfield neural network that allows a simplified 
representation of the graph isomorphism problem. 
Simulation results for the considered case studies 
show that the computation time is shorter than that of 
the recently presented neural network for this 
problem [7]. Besides, the effectiveness of the 
proposed network does not seem to be decreased as 
the size of the graph is increased. This allows us to 
solve graphs with a big number of vertices, where 
other approaches only present results for graphs in up 
to 15 vertices [2-5,7]. The chief merit of this method 
is its computational simplicity and efficiency. Thus, 
the approach is specially suitable for automatic 
computation since it rapidly provides solutions 
without a burden on the parameter tuning. 
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Figure 1.  Different pairs of isomorphic and non-

isomorphic graphs. 
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