
Shortest Common Superstring Problem with
Discrete Neural Networks

D. López-Rodŕıguez and E. Mérida-Casermeiro

Department of Applied Mathematics, University of Málaga, Málaga, Spain
{dlopez,merida}@ctima.uma.es

Abstract. In this paper, we investigate the use of artificial neural
networks in order to solve the Shortest Common Superstring Problem.
Concretely, the neural network used in this work is based on a multival-
ued model, MREM, very suitable for solving combinatorial optimization
problems. We describe the foundations of this neural model, and how it
can be implemented in the context of this problem, by taking advantage
of a better representation than in other models, which, in turn, con-
tributes to ease the computational dynamics of the model. Experimen-
tal results prove that our model outperforms other heuristic approaches
known from the specialized literature.

1 Introduction

Many problems in computational biology, such as DNA sequencing [1,2,3,4],
and in data compression [5,6], can be formulated as instances of the Shortest
Common Superstring Problem (SCSS).

For example, DNA sequencing consists in determining the correct sequence
of nucleotides in a DNA molecule. Nucleotides (adenine, cytosine, guanine and
thymine) are represented by the alphabet {a,c,g,t}. Currently, the nucleotides of
a DNA fragment can be directly determined in laboratories. Once the nucleotides
of all fragments have been determined, the sequence assembly problem aims at
reconstructing the original molecule from overlapping fragments. SCSS can be
viewed as an abstract representation of this particular task.

This problem is defined as follows: Given a set of strings P = {s1, . . . , sN},
the objective is to find the string S∗ of minimum length, such that, for all
i ∈ {1, . . . , N}, si ∈ P is a substring of S∗.

Finding such a superstring is known to be a NP-hard problem [7,8]. Further-
more, it is MAX-SNP-hard [9]. Arora, in [10] proved that problems in MAX-
SNP-hard do not admit polynomial time approximation schemes unless P=NP.

Among the approximation algorithms used to compute the shortest super-
string, we can find a greedy algorithm [9], which consists in merging pairs of
strings with maximum overlap, until a unique string is obtained, which is the
approximated solution.

This greedy approach is conjectured to be a 2-approximation algorithm [11],
meaning that, in the worst case, the solution provided by this method is twice

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 62–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Shortest Common Superstring Problem with Discrete Neural Networks 63

as long as the optimal solution. However, Blum et al. [9] proved a factor of 4 for
this problem.

This greedy algorithm was further improved by Jiang [12] (within a factor
of 2 2

3) and later by Sweedyk [13] (obtaining a constant factor of 2.5), the best
result up-to-date. However, these algorithms are not easily implementable and,
in practice, the original greedy algorithm (reliable and fast), proposed in [9], is
preferred, as well as some of its variants.

In this work, we propose the use of a discrete neural network to solve SCSS
problem. In the recent years, a Hopfield-like discrete neural network [14] has
been presented to solve this problem. However, its use implies the correct fine-
tuning of some parameters. Another drawback of that model is that it needed
N2 neurons to represent the solution of the problem when the number of strings
to be merged is |P | = N .

The neural model proposed in this work is a generalization of Hopfield’s dis-
crete model [15], allowing the neurons to take any value in a discrete set. With
the help of a simple computational dynamics, this model is able to represent so-
lutions to this problem better than the previous neural approach, just by using
N neurons.

The multivalued MREM model has obtained very good results when applied
to other combinatorial optimization problems [16,17,18,19], guaranteeing the
convergence to local minima of the energy function.

The rest of this paper is structured as follows: in Sec. 2, we present a detailed
formulation of the SCSS problem. Later, in Sec. 3, the neural model MREM
is described, as well as the implementation of the computational dynamics to
solve the problem at hand. In Sec. 4, experimental results of applying our neural
model are shown, whereas in Sec. 5 some conclusions and remarks to this work
are presented.

2 Description of the Problem

Given an alphabet A, and a set of strings over the alphabet, P = {s1, . . . , sn}, the
Shortest Common Superstring Problem consists in finding a string S∗ containing
all strings in P as substrings and with minimum length.

Let us define the overlap si,j between strings si and sj (in this order), as the
string of maximum length (denoted by |si,j |) such that it is a suffix for si and a
prefix for sj .

The solution to SCSS can be represented as a permutation Π of numbers
{1, . . . , n}, meaning the order in which strings in S must be arranged to get the
solution string S∗ = SΠ .

Thus, the objective function to be minimized is:

|SΠ | = F (Π) =
n∑

i=1

|si|−
n−1∑

i=1

|sΠ(i),Π(i+1) | (1)

64 D. López-Rodŕıguez and E. Mérida-Casermeiro

where |s| denotes the length of string s. Note that sΠ(i),Π(i+1) is the overlap
between 2 consecutive strings in SΠ , corresponding to strings at positions Π(i)
and Π(i + 1).

The minimization of the total length of SΠ is here achieved by maximizing
the sum of the lengths of the respective overlaps in the corresponding order given
by permutation Π .

Note that the solution may not be unique:

Example. Let us consider the set of strings P = {agcct, acgcgt, cgtacg, tgatc,
gtgag} over the alphabet A = {a, c, g, t}. Then, S1 = cgtacgcgtgagcctgatc and
S2 = tgatcgtacgcgtgagcct are superstrings containing all strings in P , of equal
length.

3 The MREM Model

In this section, the fundamentals of the Multivalued REcurrent Model (MREM)
[20] are described. This discrete neural network is a generalization of Hopfield’s
model [21,15] and other binary and multivalued models, such as SOAR [22] and
MAREN [23].

3.1 Description of the Neural Network

Let us consider a recurrent neural network formed by N neurons, where the state
of each neuron i ∈ I = {1, . . . , N} is defined by its output vi taking values in
any finite set M = {m1, m2, . . . , mL}. This set does not need to be numerical.
For example, M = {red, green, blue} or M = {Sunday, Monday, . . . , Saturday}.

The vector V whose components are the corresponding neuron outputs, V =
(v1, v2, . . . , vN), is called state vector. Associated to each state vector, an energy
function, similar to Hopfield’s, can be defined:

E(V) = −1
2

N∑

i=1

N∑

j=1

wi,jf(vi, vj) +
N∑

i=1

θi(vi) (2)

where

– W = (wi,j) is the synaptic weight matrix, expressing the connection strength
between neurons.

– f : M×M → R is the so-called similarity function, since f(vi, vj) measures
the similarity between the outputs of neurons i and j.

– θi : M → R is the generalization of the biases θi ∈ R, present in Hopfield’s
model.

The aim of the network is to minimize the energy function given by Eq. (2),
i.e., to achieve a stable state corresponding to a local (global, when possible)
minimum of the energy function, which is usually identified with the objective
function of the problem to solve.

Shortest Common Superstring Problem with Discrete Neural Networks 65

The introduction of the similarity function f makes the network very versa-
tile and usually causes a better representation of the problem at hand, see, for
example, [24,18,25,26]. It leads to a better representation of problems than other
multivalued models, as SOAR and MAREN [23,22], since in those models most
of the information enclosed in the multivalued representation is lost by the use
of the signum function that only produces values in {−1, 0, 1}.

Many computational dynamics can be defined for this model, that is, several
neuron updating schemes are available provided the versatility of the network.

Usually, neuron updates are made by taking into consideration the input to the
network, called synaptic potential. This potential is computed as U = −∆E, that
is, the opposite of the energy increase produced by the studied neuron update.
Thus, if E is the current energy value, and E′ is the energy value associated to
the proposed update, then U = E − E′.

If several possible updates {V1, . . . , VK} are studied, consider Uj = E − E′
j ,

where E′
j is the energy value associated to the possible new state Vj . In this

case, the update is given by the new state achieving the maximum potential
u = Uj = max{U1, . . . , UK}.

If u > 0, then the update reduces the value of the energy function. Otherwise,
since no improvement is obtained by that update, the network does not perform
the action. In this situation, the network is said to have converged to a stable state.

Stable states correspond to local minima of the energy function, in the sense
that, by using the given dynamics, it is not possible to achieve a further im-
provement of the solution.

3.2 MREM Applied to SCSS

Note that a solution to SCSS problem can be represented as a permutation of
the strings, meaning the order in which strings have to be merged to obtain that
solution.

Then, we define feasible state vectors as those representing permutations of
{1, . . . , n}. Thus, any feasible state vector V will represent an ordering of the
strings in S. vi = k means that sk is placed in the i-th place in the solution
string sV .

It can be observed that the objective function in Eq. (1) for SCSS consists of
two terms. The first one,

∑
i |si| is fixed, and therefore it is not important at the

optimization stage.
The other term, −

∑n−1
i=1 |sΠ(i),Π(i+1)|, can be expressed as the energy function

of the MREM model.
By comparing the objective function in Eq. (1) and the energy function of the

neural model, in Eq. (2), we can define:

wi,j =
{

2, if j = i + 1, i = 1, . . . , n − 1
0, otherwise

f(x, y) = |sx,y|
θi(x) = 0

to obtain the desired identification between both functions.

66 D. López-Rodŕıguez and E. Mérida-Casermeiro

The computational dynamics of this model is based on that the network must
remain in a feasible state along iterations. This is the reason for not needing
the fine-tuning of parameters, usually present in Hopfield’s energy function, as
penalty terms for unsatisfied constraints. Furthermore, it is an easily imple-
mentable dynamics, and it can be described as follows:

1. Select a random initial feasible state for the network.
2. The net sequentially selects 2 neurons m and p such that 1 ≤ m < p ≤ N .

Then, the current solution V can be expressed as the concatenation of 3
subsequences, represented by 3 vectors a = (v1, . . . , vm), b = (vm+1, . . . , vp)
and c = (vp+1, . . . , vN).

3. The network studies the updates to different configurations: acb, bac, bca,
cab, cba, where

acb = (v1, . . . , vm, vp+1, . . . , vN , vm+1, . . . , vp)

bac = (vm+1, . . . , vp, v1, . . . , vm, vp+1, . . . , vN)

bca = (vm+1, . . . , vp, vp+1, . . . , vN , v1, . . . , vm)

cab = (vp+1, . . . , vN , v1, . . . , vm, vm+1, . . . , vp)

cba = (vp+1, . . . , vN , vm+1, . . . , vp, v1, . . . , vm)

by computing the corresponding synaptic potentials:

Uabc = 0 (since there is no change in state vector)

Uacb = |svm,vp+1 | + |svN ,vm+1 |− |svm,vm+1 |− |svp,vp+1|

Ubac = |svp,v1 | + |svm,vp+1 |− |svm,vm+1 |− |svp,vp+1|

Ubca = |svp,vp+1 | + |svN ,v1 |− |svm,vm+1 |− |svp,vp+1 | = |svN ,v1 |− |svm,vm+1 |

Ucab = |svN ,v1 | + |svm,vm+1 |− |svm,vm+1 |− |svp,vp+1 | = |svN ,v1 |− |svp,vp+1 |

Ucba = |svN ,vm+1 | + |svp,v1 |− |svm,vm+1 |− |svp,vp+1 |
These expressions are derived from U = E − E′, being E the energy as-
sociated to the current network state, and E′ the energy associated to the
corresponding update.

4. The next network configuration is the one decreasing most the energy func-
tion value (equivalently, achieving the greatest potential): if Uijk is the
maximum in {Uabc, Uacb, Ubac, Ubca, Ucab, Ucba}, then the next state is ijk ∈
{abc, acb, bac, bca, cab, cba}. If ijk = abc, there is no change in the state
vector.

5. Repeat steps 2 - 4 until convergence is detected, that is, all pairs of neurons
have been studied, and no change is done in the configuration of the network
(state vector).

Once the network converges, the stable state represents a minimum of the
energy function which, in our case, is equivalent to a maximum of the aggregate
overlap length in the resulting string, given by SV .

Shortest Common Superstring Problem with Discrete Neural Networks 67

Algorithm 1. Greedy Heuristic
Data: Set P = {s1, . . . , sN} of strings.
Result: A string s such that every si is a substring of s (intended to have

minimal length).
begin

while |P | > 1 do
Select two strings a, b ∈ P with maximal overlap
Merge a and b into a new string c
P ←− (P \ {a, b}) ∪ {c}

return the unique string s ∈ P .
end

4 Experimental Results

In this section, we compare the efficiency of our neural model MREM to the
greedy heuristic presented in [9], which was conjectured to be a 2-approximation
algorithm. This greedy heuristic is shown in Algorithm 1.

Two experiments have been performed with these algorithms. The first one
consisted on find the SCSS of a set of strings of fixed length, whereas the second
allowed to use strings of variable length.

Fixed length string datasets were randomly built according to 3 parameters:
string length ({6,8,10}), number of words in P (|P | ∈ {25, 50, 100}) and number
of symbols in the alphabet (|A| ∈ {2, 4, 6, 8}). For each combination of these
parameters, 10 instances were built (that is, 10 sets P), and the algorithms
were independently run 100 times to obtain the superstring length results given
in Table 1. Note that the greedy algorithm always selected the same solution,
whereas MREM achieves different results depending on its random initial state,
what helps avoiding local optima of the energy function.

In the last two columns of the tables, we present the improvement made by
MREM with respect to the greedy algorithm (in %). Positive values indicate
that MREM performed better than the greedy. Note that our neural approach
outperformed the greedy algorithm in most cases on average, and always on best
result.

For variable length string datasets, the definition of |P | and |A| remain the
same, but string length was randomly selected in {2, . . . , 10}. Thus, for each
value of |A|, |P | strings of length between 2 and 10, formed the set P . As before,
for each combination of the parameters, 10 sets P were built and 100 independent
executions were performed with each one. Superstring length results are given
in Table 2. Note that, in all cases, MREM outperformed the greedy algorithm,
obtaining shorter superstrings, not only on minimal length, but also on average
length.

There are 2 behaviors that can be seen on these tables:

– As the number |A| of symbols in the alphabet increases (for a fixed number
of strings, |P |), MREM and the greedy algorithm tend to obtain more similar
results, reducing the improvement made by MREM over the latter.

68 D. López-Rodŕıguez and E. Mérida-Casermeiro

Table 1. Average and minimum superstring length comparison between our neural
proposal and the greedy algorithm, for fixed length strings

MREM Greedy Improvement
Length |P | |A| Average Best Time (sec.) Best Time (sec.) Average Best

6 25 2 67.169 63.1 0.0216 91.5 0.0256 26.59 31.04
4 106.065 103.1 0.0211 113 0.0234 6.14 8.76
6 121.516 118.3 0.0217 120.1 0.0239 -1.18 1.5
8 126.033 123.7 0.0209 124.1 0.0237 -1.56 0.32

50 2 100.276 92.9 0.1442 168.7 0.091 40.56 44.93
4 195.324 189 0.1342 209.5 0.0917 6.77 9.79
6 225.096 219.8 0.1336 236 0.0912 4.62 6.86
8 238.884 234 0.1447 249.2 0.092 4.14 6.1

100 2 146.332 136.3 0.9982 326.7 0.4456 55.21 58.28
4 362.473 352.2 0.7874 383.5 0.4063 5.48 8.16
6 418.712 409.1 0.8418 424.1 0.4063 1.27 3.54
8 451.846 443.8 0.8881 458 0.4118 1.34 3.1

8 25 2 112.69 108.1 0.0251 127.9 0.0272 11.89 15.48
4 158.908 155.7 0.0204 158.9 0.257 -0.01 2.01
6 170.554 167.8 0.0221 174.3 0.025 2.15 3.73
8 178.423 176.1 0.0206 179.6 0.0258 0.66 1.95

50 2 180.117 171.6 0.149 237.6 0.0954 24.19 27.78
4 291.753 284.8 0.1399 305.1 0.0961 4.37 6.65
6 323.997 318.6 0.1391 332.1 0.0965 2.44 4.07
8 339.505 334.9 0.1338 346.1 0.0944 1.91 3.24

100 2 287.94 275 0.9774 439.7 0.4076 34.51 37.46
4 547.072 536.8 0.8547 567.1 0.414 3.53 5.34
6 617.981 609.9 0.8469 633.1 0.4253 2.39 3.66
8 650.429 642.8 0.9 656.7 0.4273 0.95 2.12

10 25 2 155.939 151 0.0234 176.7 0.0258 11.75 14.54
4 207.935 204.6 0.0219 215.3 0.0259 3.42 4.97
6 220.99 218.2 0.0207 220 0.0261 -0.45 0.82
8 226.615 224.4 0.0206 229.6 0.0262 1.3 2.26

50 2 284.153 274 0.1614 318.6 0.0984 10.81 14
4 396.893 390.5 0.1396 399 0.0986 0.53 2.13
6 425.848 420.9 0.134 432.4 0.0995 1.52 2.66
8 439.814 434.8 0.1449 445.6 0.0999 1.3 2.42

100 2 465.955 450.5 0.955 581.9 0.4389 19.93 22.58
4 740.486 729.7 0.8943 770.4 0.428 3.88 5.28
6 818.364 809.9 0.8752 834.6 0.4318 1.95 2.96
8 853.481 845.4 0.8965 867 0.4371 1.56 2.49

– As the number of strings in P increases (for fixed number |A|), MREM
improves its relative performance with respect to the greedy algorithm. Thus,
in real-world problems, MREM may achieve better results than the greedy
algorithm.

Shortest Common Superstring Problem with Discrete Neural Networks 69

Table 2. Average and minimum superstring length comparison between our neural
proposal and the greedy algorithm, for variable length strings

MREM Greedy Improvement
|P | |A| Average Best Time (sec.) Best Time (sec.) Average Best
25 2 66.004 62.2 0.0189 77.3 0.0293 14.61 19.53
25 4 101.112 98.5 0.0186 105.7 0.024 4.34 6.81
25 6 109.799 107.3 0.0204 110.4 0.0238 0.54 2.81
25 8 109.829 107.5 0.0216 111.5 0.0238 1.5 3.59
50 2 117.959 110.4 0.1303 142.9 0.0929 17.45 22.74
50 4 181.495 176.1 0.1302 189.2 0.0935 4.07 6.92
50 6 198.456 192.9 0.1382 210.1 0.0972 5.54 8.19
50 8 225.345 220.8 0.1448 230.7 0.0954 2.32 4.29
100 2 201.824 190.8 0.9567 253.8 0.436 20.48 24.82
100 4 351.522 342 0.8342 382 0.4214 7.98 10.47
100 6 388.724 380.6 0.8386 405.2 0.4205 4.07 6.07
100 8 421.852 414.4 0.8033 435.6 0.4248 3.16 4.87

5 Conclusions and Future Work

In this work, a neural model, MREM, is presented to solve the Shortest Common
Superstring problem. This problem arises in real-world applications coming from
molecular genetics (DNA sequencing) and data compression.

The neural model MREM is a generalization of Hopfield’s model. Its main fea-
ture is that neuron states can be selected from a discrete set M = {m1, . . . , mL},
instead of taking value in {-1,1} or {0,1}. This fact makes the network represent
combinatorial optimization problems more easily.

A neural dynamics has been developed and implemented to solve the problem
at hand, taking advantage of the representation of a solution as a permutation
of the indices of the strings to be merged.

We have tested our approach by comparing it to a greedy algorithm, well-
known from the specialized literature. In our results, MREM proved to outper-
form the greedy algorithm in most cases. It may be of great help in tackling
real-world SCSS instances.

As a future work, we plan to:

– Develop a parallel version of the computational dynamics presented in this
paper, in order to reduce the computational time used to achieve the solution.

– Introduce some mechanism to avoid local optima of the objective function.
The hybridization of MREM with other stochastic techniques (Genetic Al-
gorithms, Simulated Annealing) may be helpful.

– Make a theoretical study on the behavior of this new neural algorithm, in
order to confirm the improvement over the greedy algorithm.

70 D. López-Rodŕıguez and E. Mérida-Casermeiro

Acknowledgements

This work is partially supported by Junta de Andalućıa (Spain) under contract
TIC-01615, project name Intelligent Remote Sensing Systems.

Authors also wish to thank Prof. Gabriela Andrejková, from University of
Kosice, Slovakia, for introducing the Shortest Common Superstring problem to
them.

References

1. Ilie, L., Popescu, C.: The shortest common superstring problem and viral genome
compression. Fundamenta Informaticae 73(1,2), 153–164 (2006)

2. Lesk, A.: Computational Molecular Biology, Sources and Methods for Sequence
Analysis. Oxford University Press, Oxford (1988)

3. Li, M.: Towards a dna sequencing theory (learning a string). In: Proc. 31st Annual
Symposium on Foundations of Computer Science, pp. 125–134 (1990)

4. Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E.: Algorithms for some string
matching problems arising in molecular genetics. In: Proc. IFIP Congress, pp. 53–
64 (1983)

5. Daley, M., McQuillan, I.: Viral gene compression: complexity and verification. In:
Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004, vol. 3317,
pp. 102–112. Springer, Heidelberg (2005)

6. Storer, J.: Data Compression: Methods and Theory. Computer Science Press,
Rockville (1988)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. In: Garey, M.R., John-
son, D.S. (eds.) A guide to the theory of NP-Completeness, W. H. Freeman and
Company, New York (1979)

8. Maier, D., Storer, J.: A note on the complexity of the superstring problem. In:
Proceedings of the 12th Annual Conference on Information Science and Systems,
pp. 52–56 (1978)

9. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of
shortest superstring. Journal of the ACM 41(4), 630–647 (1994)

10. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
hardness of approximation problems. In: 33rd Annual Symposium on Foundations
of Computer Science, pp. 14–23 (1992)

11. Turner, J.: Approximation algorithms for the sortest common superstring problem.
Information and Computation 83(1), 1–20 (1989)

12. Jiang, T., Jiang, Z., Breslauer, D.: Rotation of periodic strings and short super-
strings. In: Proc. 3rd South American Conference on String Processing (1996)

13. Sweedyk, Z.: A 2 1
2 -approximation algorithm for shortest superstring. SIAM Journal

of Computing 29, 954–986 (1999)
14. Andrejkov, G., Levick, M., Oravec, J.: Approximation of shortest common super-

string using neural networks. In: Proc. of 7th International Conference on Elec-
tronic Computers and Informatics, pp. 90–95 (2006)

15. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems.
Biological Cybernetics 52, 141–152 (1985)

16. Mérida-Casermeiro, E., Galán-Maŕın, G., Muñoz-Pérez, J.: An efficient multivalued
hopfield network for the travelling salesman problem. Neural Processing Letters 14,
203–216 (2001)

Shortest Common Superstring Problem with Discrete Neural Networks 71

17. Mérida-Casermeiro, E., Muñoz-Pérez, J., Domı́nguez-Merino, E.: An n-parallel
multivalued network: Applications to the travelling salesman problem. In: Mira,
J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 406–413. Springer,
Heidelberg (2003)

18. Mérida-Casermeiro, E., López-Rodŕıguez, D.: Graph partitioning via recurrent
multivalued neural networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 1149–1156. Springer, Heidelberg (2005)

19. López-Rodŕıguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M.,
López-Rubio, E.: Image compression by vector quantization with recurrent dis-
crete networks. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4132, pp. 595–605. Springer, Heidelberg (2006)

20. Mérida-Casermeiro, E.: Red Neuronal recurrente multivaluada para el re-
conocimiento de patrones y la optimización combinatoria. Ph. D thesis, Univer-
sidad de Málaga (2000)

21. Hopfield, J.: Neural networks and physical systems with emergent collective com-
putational abilities, vol. 79, pp. 2254–2558 (1982)

22. Ozturk, Y., Abut, H.: System of associative relationships (soar) (1997)
23. Erdem, M.H., Ozturk, Y.: A new family of multivalued networks. Neural Net-

works 9(6), 979–989 (1996)
24. Mérida, E., Muñoz, J., Beńıtez, R.: A recurrent multivalued neural network for the

N-queens problem. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001, vol. 2084, pp.
522–529. Springer, Heidelberg (2001)

25. López-Rodŕıguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M.,
Galán-Maŕın, G.: k-pages graph drawing with multivalued neural networks. In:
de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS,
vol. 4669, pp. 816–825. Springer, Heidelberg (2007)

26. Galán-Maŕın, G., Mérida-Casermeiro, E., López-Rodŕıguez, D.: Improving neural
networks for mechanism kinematic chain isomorphism identification. Neural Pro-
cessing Letters 26, 133–143 (2007)

