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Abstract. The self-organizing map (SOM) has been used in multiple
areas and constitutes an excellent tool for data mining. However, SOM
has two main drawbacks: the static architecture and the lack of repre-
sentation of hierarchical relations among input data. The growing hier-
archical SOM (GHSOM) was proposed in order to face these difficulties.
The network architecture is adapted during the learning process and
provides an intuitive representation of the hierarchical relations of the
data. Some limitations of this model are the static topology of the maps
(2-D grids) and the big amount of neurons created without necessity. A
growing hierarchical self-organizing graph (GHSOG) based on the GH-
SOM is presented. The maps are graphs instead of 2-D rectangular grids,
where the neurons are considered the vertices, and each edge of the graph
represents a neighborhood relation between neurons. This new approach
provides greater plasticity and a more flexible architecture, where the
neurons arrangement is not restricted to a fixed topology, achieving a
more faithfully data representation. The proposed neural model has been
used to build an Intrusion Detection Systems (IDS), where experimental
results confirm its good performance.

Keywords: Data clustering, self-organization, graph-based representa-
tion, hierarchical clustering, intrusion detection systems.

1 Introduction

Data clustering is an unsupervised learning method to find an optimal parti-
tioning of the data set. This partitioning organizes the input data into clusters
according to a similarity measure, where data belonging to one cluster are more
similar than data belonging to different clusters. Generally speaking, unsuper-
vised learning methods are specially useful when we have unlabeled input data,
that is, the groups in which data are classified are unknown. The purpose of
these methods is to discover groups in a data set based on similarity, where
input data are usually represented as feature vectors of high dimensionality.
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The self-organizing map (SOM) is a widely used unsupervised neural network
for clustering high-dimensional input data and mapping these data into a two-
dimensional representation space [1]. However, it has some drawbacks. To begin
with, the number and arrangement of neurons (network architecture) of the SOM
is static and has to be established in advance. This task can be difficult because
it is needed a prior study of the problem domain, specially when we have vectors
with many features. Also, inherent hierarchical relations among input data are
not represented on the map and can make difficult the interpretation of the data.

The growing hierarchical SOM (GHSOM) tries to face these problems derived
from SOM. The GHSOM has a hierarchical architecture arranged in layers, where
each layer is composed of different growing SOMs expanded from neurons of
the upper layer maps and the number of neurons of each map are adaptively
determined [2]. This way, the architecture of the GHSOM is established during
the unsupervised learning process according to the input patterns. However, this
neural model keep showing some difficulties related to its static topology. In fact,
each map is initiated with 2x2 neurons, forcing the map to be a 2-D rectangular
grid. The problem of this topology is that we need to preserve the rectangular
grid and when the map grows, not only a neuron but a row or a column of
neurons has to be inserted. As a result, a lot of neurons are inserted without
necessity, being the amount of neurons far from optimal, especially when we
have to insert neurons in very large maps. Moreover, there are wide spectrum
application domains where a rectangular grid is not the most suitable topology
to represent the input data. In order to make easy the identification of relations
among input data and mirror its inherent structure, the map should capture the
own topology of the data as faithfully as possible.

A graph-based representation space provides the enough flexibility to reflect
different representations of the same domain (data and relations) and is easy
to understand. Most of the related works which use SOMs with a graph-based
representation, treat each neuron as a graph since they use this model for rep-
resenting input data [3,4]. The goal is to cluster these graphs. Here the goal is
different; we use graphs to represent the topology of a SOM. Thus, the repre-
sentation space can totally adapt to the data structure.

In this paper, by using this graph-based representation in hierarchical self-
organization, we propose a novel artificial neural network architecture based on
the GHSOM called the growing hierarchical self-organization graph (GHSOG).
This new model has the advantages of the GHSOM model and also provides
a better and easy data representation thanks to a more flexible and adaptive
topology and a lower number of neurons used in the representation.

In order to check the performance of the GHSOG, an Intrusion Detection
System (IDS) has been implemented using this new model. An IDS monitors
network traffic to detect an attack or intrusion in a network environment. Some
anomaly detection systems using data mining techniques such as clustering,
support vector machines (SVM) and neural network systems have been pro-
posed [5,6]. Many self-organizing models have been used to implement an IDS,
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however they have many difficulties detecting a wide variety of attacks with low
false positive rates [7].

The remainder of this paper is organized as follows. In Section 2, we first
present a description of our new GHSOG model. In Section 3, an IDS is imple-
mented with the GHSOG model, where data preparation and some experimental
results are presented. Some remarks conclude this paper in Section 4.

2 Growing Hierarchical Self-Organizing Graph

The Growing Hierarchical Self-Organizing Graph is a neural network based on
the GHSOM, where only one neuron is added when a self-organizing map should
be expanded. This way, the topology that the tree nodes present is a graph
instead of a grid. Initially, a segment composed of two neurons and a connection
edge is used to represent a cluster. If more neurons are needed to capture the
cluster knowledge accurately, then these neurons are added one by one, ensuring
that each new neuron forms a triangle tile in the graph. See Figure 1.

Fig. 1. A sample of the GHSOG model

Let X = x1, x2, . . . , xL the training data set consisting of L samples, the
starting point of the training algorithm is the computation of the quantization
error of the whole training data set

qe0 =
∑

xj∈X

‖w0 − xj‖ (1)

with w0 the global mean. Using the quantization error instead of the mean
quantization error gives the method the capacity of assigning more neurons in
the map for more densely populated regions of the input space. The first self-
organizing map is created at layer 1, i.e., at depth level 1 in the tree. This map
consists of two neurons which are linked by a unique connection.
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Then for each local graph, i.e. each self-organizing graph, a two phase learning
process begins. The first phase carries out the training (and growing if required)
of the local self-organizing graphs; the second one tries to expand that neurons
which required a more thorough clustering of the data they represent. For that
purpose a new graph in the next tree layer is created.

In the local training and growing phase each local graph is trained following
the learning process proposed by Kononen in [1] except for the neighborhood
function. In the proposed network it is considered that the neighbors of a neuron
are all the neurons which are connected directly in the graph.

It should be noticed that the samples used to train each local graph are those
belonging to the cluster corresponding to the father neuron in the tree, i.e., if
f is the father neuron then the training data set for the child graph is Cf ⊆ X
where Cf is the subset of vectors of the input data that is mapped onto unit f .

After training the local graph, the learning algorithm checks if the graph must
grow.

1
|Uf |

∑

i∈Uf

qei < τ1 · qef (2)

where qei =
∑

xj∈Cf
‖wi − xj‖ is the absolute quantification error and Uf the

neurons in the hierarchical tree which are part of the local graph, expanded from
neuron f . The expression compares the mean quantization error of the graph
with the quantization error of the corresponding neuron f in the upper layer.
The parameter τ1 allow the user to control the depth/shallowness of the obtained
hierarchical structure. If the criterion is not satisfied then a new neuron is added
and this phase starts again. This iterative process finishes when the expression
holds true.

When the mean quantization error of the graph is too high and does not fulfill
the stopping criterion, a new neuron is added to the graph in order to reduce
that error. Therefore, we look for the neuron of the graph which contributes
most to the quantization error. This neuron is named the error neuron

e = arg max
i

∑

xj∈Ci

‖xj − wi‖ (3)

A second neuron is needed to keep the triangle tile based structure of the local
graphs. The selected neuron will be the most dissimilar neighboring neuron d of
the error neuron e

d = arg max
i

(we − wi), wi ∈ Ne (4)

with Ne the set of neighbours neurons of the error neuron e. Finally the location
of the new neuron in the input space, which coincides with the weight vector of
the neuron is

wnew =
qee · we + qed · wd

qee + qed
(5)

Note that the most dissimilar neuron d of the error neuron e is the farthest of
its neighbors and, therefore, most of the time the new neurons are placed near
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the error neuron, which is the region in the input space where the quantization
error is greater and help is needed.

Once the first iterative phase has finished, the neurons expansion phase starts.
In this step for each neuron of the graph we compute the checking

qei = τ2 · qe0 (6)

where τ2 is a user parameter which controls the desired quality for the data
representation. If the expression holds true for all the neurons the training of the
current local graph finishes and the process continues with another local graph
(in the same layer of the tree or in deeper layers). Otherwise for each neuron
which does not satisfies the criterion a new graph is created in the next layer
of the tree. The new graph is a graph consisting of two neurons, whose weigth
vectors are the average between the father vector and the first and second more
similar neighbor vectors, respectively. If the father has only one neighbor, the
second expanded neuron is a copy of the father.

3 Experimental Results

In order to prove the performance of the new GHSOG model, an IDS has been
implemented, which detects a wide variety of attacks in a military network envi-
ronment. GHSOG training and testing have been done with the KDD Cup 1999
benchmark data set created by MIT Lincoln laboratory. The purpose of this
benchmark was to build a network intrusion detector capable of distinguishing
between intrusions or attacks, and normal connections. To make easy the train-
ing and testing, the 10% training data set and the 10% testing data set are
provided, which contain 494,021 and 311,029 connection records, respectively.
In the training data set there are 22 attack types in addition to normal records
whereas in the testing data set 15 new attack types are also present.

3.1 Data Preparation

In the KDD 1999 data set, each connection record has 41 features preprocessed
from monitoring network packets. Among these features, 3 are qualitative: the
protocol type, which can take the values TCP, UDP or ICMP; the service type,
with 66 different values and the flag, with 11 possible values.

Most of the related works map these data into consecutive quantitative values
so as to compute the similarities of the connections. However, since qualitative
data have no an order associated, the use of the Euclidean distance is not ap-
propriate for these types of data. To solve this problem, each qualitative feature
has been replaced with a binary vector composed by as many binary features as
different possible values that feature can take. Thus, the distance among qual-
itative values is always the same allowing the use of the Euclidean distance or
other standard metric. This way, the number of features has been increased from
41 to 118.
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3.2 Results

For our experiments, two data subsets have been randomly selected from the
10% training data set: S1 with 100,000 connection records and S2 with 169,000
connection records. The 22 attack types in addition to normal records are con-
tained in both data subsets, and the distribution of each connection type reflects
the own distribution of the 10% training data set. In order to train two neural
networks with the two data subsets, 0.1 and 0.03 have been chosen as values for
parameters τ1 and τ2, respectively. The resulting architecture of the first neural
networks trained with S1 is shown in Fig. 1. The second one has 1 layer more,
but with just a graph in that layer.

Most of the related works are only interested in knowing whether the input
pattern is an anomaly or a normal connection record. Here, our interest is also
to know whether one connection record type is identified as from its own type.
We name this identification rate. Detection rate is the percentage of detected
attacks and false positive rate is the percentage of normal connections records
detected as attacks. The training results for S1 and S2 are given in Table 1. We
can see that the detection rate is around the 96% for both data sets, but the
false positive rate is higher for the first data subset.

Table 1. Training results for S1 and S2 data subsets

Training Set Detection (%) False Positive (%) Identification (%)
S1 96.75 3.81 94.64
S2 96.44 1.42 95.40

Table 2. Testing results for GHSOGs trained with S1 and S2 data subsets

Training Set Detection (%) False Positive (%) Identification (%)
S1 90.15 2.09 90.68
S2 91.48 4.51 90.57

After training, the two trained GHSOGs have been tested with the 10% KDD
1999 testing data set, which contains 311,029 connection records and 15 new
attack types as mentioned above. Testing results are shown in Table 2. During
the testing, we achieve similar detection rates for both GHSOGs but the false
positive rate is higher in the second GHSOG. Note that the identification rate
is higher than the detection rate in the first GHSOG. Although it can seem
strange, this is due to the fact that normal connections are taken into account
in addition to attack connections to compute the identification rate.

There are many related works that have used self-organizing maps to imple-
ment an IDS. A hierarchical Kohonen net (K-Map) was proposed in [8], which
consists of three static SOMs arranged in layers. They achieved 99.63% detec-
tion rate after testing, but taking into account several limitations. Although they
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Table 3. Testing results for differents IDSs based on self-organization

Detected(%) False Positive(%) Neurons
GHSOG 90.68 2.09 35
K-Map 99.63 0.34 144
SOM 97.31 0.042 400

SOM (DoS) 99.81 0.1 28800

used a data subset of 169,000 connection records with 22 attack types from the
KDD Cup 1999 data set as we used, during the testing they used just 3 attack
types, whereas we used 38 attack types, where 15 attack types were unknown.
They also used a combination of 20 features that had to be established in ad-
vance and 48 neurons in each layer. In [9], a SOM trained on all the 41 features
was chosen in order to compare results. A 97.31% detection rate was achieved
but using 400 neurons. An emergent SOM (ESOM) for the Intrusion Detection
process was proposed in [10]. They achieved detection rates between 98.3% and
99.81% and false positives between 2.9% and 0.1%. However, they just detected
denial of service attacks (DoS), they used a pre-selected subset of 9 features
and a number of neurons between 160x180 and 180x200. In addition, their best
result (99.81% detection rate and 0.1% false positive rate) was just trained and
tested with one DoS attack type, the smurf attack. These different results are
summarized in Table 3. Note that our detection rates are lower than the rest
of the proposed IDSs. Nevertheless, we provide a more simple architecture with
less neuron, which was automatically generated during the training, and where
the data hierarchical structure is easier to understand.

4 Conclusions

In this paper, a growing hierarchical self-organizing map (GHSOG) has been
proposed. This novel neural network faces the limitations of the SOM related
to its static architecture and the lack of representation of hierarchical relations
among input data. The GHSOM model also faces these problems of the SOM,
but keep maintaining some limitations: the static topology of the maps (2-D
grids) and the big amount of neurons created without necessity. The proposed
GHSOG has a topology based on graphs instead of 2-D rectangular grids, where
the neurons are considered the vertices, and each edge of the graph represents
a neighborhood relation between neurons. This graph-based representation pro-
vides greater plasticity and a more flexible and adaptive architecture, where
the neurons arrangement is not restricted to a fixed topology, achieving a more
faithfully data representation.

The performance of the GHSOG has been tested by implementing an Intrusion
Detection System (IDS). To train and test the neural network, the KDD Cup
1999 benchmark data set has been used. During the training, two different data
subsets has been selected from the 10% training KDD data set, with 100,000
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and 169,000 connection records, respectively. The two generated GHSOG ar-
chitectures were tested with the 10% training KDD data set, which contains
311,029 connection records. After testing, we achieved a 90.15% detection rate
and a false positive rate of 2.09% as shown in Table 2. Comparison results are
also provided. Although testing results cannot seem as good as in other related
works, these just are limited to specific subsets of features and/or attacks, which
were established in advanced and the number of neurons are higher than we
used. Furthermore, our architecture was generated during the training adapt-
ing to input data, mirroring their hierarchical relations and achieving a more
faithfully data representation.
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