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Abstract. In this paper, a novel method to estimate the level of Rician
noise in magnetic resonance images is presented. We hypothesize that
noiseless images follow Benford’s law, that is, the probability distribu-
tion of the first digit of the image values is logarithmic. We show that this
is true when we consider the raw acquired image in the frequency domain.
Two measures are then used to quantify the (dis)similarity between the
actual distribution of the first digits and the more theoretical Benford’s
law: the Bhattacharyya coefficient and the Kullback-Leibler divergence.
By means of these measures, we show that the amount of noise directly
affects the distribution of the first digits, thereby making it deviate from
Benford’s law. In addition, in this work, these findings are used to design
a method to estimate the amount of Rician noise in an image. The
utilization of supervised machine learning techniques (linear regression,
polynomial regression, and random forest) allows predicting the param-
eters of the Rician noise distribution using the dissimilarity between the
measured distribution and Benford’s law as the input variable for the
regression. In our experiments, testing over magnetic resonance images
of 75 individuals from four different repositories, we empirically show that
these techniques are able to precisely estimate the noise level present in
the test T1 images.
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1 Introduction

Real-world magnetic resonance imaging (MRI) data is very often corrupted by
a noise component, generated in the acquisition process. The noise is a challeng-
ing problem since it degrades the reliability of both radiologists and automatic
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computer-aided diagnosis. It also can affect the efficiency of automated quanti-
tative post-processing methods, which are increasingly used nowadays, both in
clinical practice and in research.

Denoising methods are an important part of the pre-processing of MRIs, and
try to improve the image quality by increasing the Signal-to-Noise Ratio (SNR)
while preserving the image features. Currently, many different denoising methods
have appeared in the literature. We can find methods based, for example, on the
wavelet transform [24], the anisotropic diffusion filter [12] or non-local filters
[25], the linear minimum square error [6], a sparse representation learning [3],
the singular value decomposition [27] or the maximum likelihood approach [19].

With the rise of deep learning, new denoising techniques have appeared, e.g.,
the stacked sparse auto-encoder [4], multi-layer perceptron [13] or convolutional
neural networks [23]. Using residual learning, the authors in [26] developed a
deep denoising conventional neural network for Gaussian denoising, achieving
good performance. Also, in [8], a convolutional neural network is presented for
medical image denoising. More recently, attention-guided models such as [22]
have been presented, showing good performance.

It is already known that MRI noise follows a Rician distribution [7] and that
there is around 60% underestimation of the true noise if the noise in MRI is
assumed to be Gaussian. Note that the Rician distribution is signal-dependent,
differently from the additive Gaussian noise. Thus, separating noise from the
raw MRI without losing critical image features remains a challenging task.

Some of the different denoising algorithms assume that the deviation parame-
ter σ of the Rician distribution which generates the noise is known. Noise param-
eters can be estimated by using methods based on principal components analysis
[15] and on the wavelet transform [2]. The method based on PCA is best suited
for weak texture images but not so good for Rician noise estimation. In the
wavelet approach, the image is decomposed in sub-bands, of which the HH sub-
band is composed of the wavelet noise coefficient. The median of these coefficients
is used to compute the median absolute deviation estimator for σ. Although this
wavelet model fits better Gaussian noise, it can be adequately modified [11] to
estimate the σ parameter in Rician noise.

In this work, we propose an alternate technique to estimate the noise devi-
ation parameter, based on Benford’s law, that is, in the statistical distribution
of the first significant digits in a dataset. Although it is well known that image
histogram does not follow Benford’s law, certain transformations in the image
are consistent with such distribution. Particularly, in [9], it is shown that the
gradient and Laplace transform magnitude follows Benford’s law, even in med-
ical images such as MRI [20]. Other transformations whose coefficients follow
Benford’s law are the discrete cosine and wavelet transforms [1].

Our proposal aims at demonstrating that the coefficients of the Fourier trans-
form of an image follow closely Benford’s law, and we hypothesize that larger
amounts of noise in an image make these coefficients deviate from such distri-
bution. Hence, the level of agreement between the expected distribution and
the actual first digit distribution in the Fourier domain is an indicator of the
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noise parameter σ. As an application of these results, we show how regression
techniques are able to accurately predict the noise level of an image.

2 Methodology

In this section, the proposed methodology to estimate Rician noise in 3D MRIs
is presented. It is well known that the noise in magnitude MRIs can be modeled
by Rician noise [7]. Let x̂ be the original (noiseless) image pixel intensity, and x
the measured pixel intensity in the presence of Rician noise of level σ, where σ
is the standard deviation of the Gaussian noise affecting the real and imaginary
MRIs, so that the Gaussian noise level σ in both real and imaginary images is
assumed to be the same. Then the probability distribution for x is given by:

p (x) =
x

σ2
exp

(
−x2 + x̂2

2σ2

)
I0

(
xx̂

σ2

)
(1)

where I0 is the modified zeroth order Bessel function of the first kind.
In this work we propose to employ Benford’s law to estimate the Rician

noise level σ. Benford’s law is an empirical law which states that the probability
distribution Q (n) of the first digit n of the decimal representation of a nonzero
real number y is logarithmic [5]:

Q (n) = log10

(
1 +

1
n

)
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|y|
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⌋
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where n ∈ {1, 2, ..., 9}, |·| stands for the absolute value of a real number, and #·$
denotes rounding towards −∞.

Despite its counter intuitive nature, Benford’s law has been found to hold
for many datasets coming from natural processes, such as natural images in
a transformed domain [1]. Our hypothesis is that the higher the Rician noise
corrupting a MRI, the farther that the image departs from Benford’s law. This
effect is better observed for the values of the 3D Fast Fourier Transform (FFT)
of the MRI rather than the raw pixel intensity values because the distribution of
the first digits of the latter is affected by the measurable pixel intensity range,
while the former is relatively independent from the pixel intensity range. As seen
in [21], distributions that have a large width, i.e. they spread their probability
mass across several orders of magnitude, follow Benford’s law more closely. The
raw pixel intensity values have a limited range, so their distribution has a reduced
width. On the contrary, the FFT of the raw values is not constrained by this
limitation. In fact, the compression/expansion property of the FFT means that
the narrower the range of the raw pixel values, the wider the range of their FFT.

Let us note y the 3D FFT of the measured pixel intensity values x, so that
the first digit of the decimal representation of y is noted n, as given by (2).
Then a measure D of the dissimilarity of the observed distribution P (n) with
respect to Benford’s law distribution Q (n) given by (2) must be selected. We
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Fig. 1. First step: FFT histogram computation and comparison with Benford’s law.

consider two such measures, namely the Bhattacharyya Coefficient (BC) and the
Kullback-Leibler (KL) divergence:

DBC =
9∑

n=1

√
P (n)Q (n), DKL =

9∑

n=1

P (n) log
P (n)
Q (n)

(3)

It must be noted that the lower DKL, the closer the observed distribution
P (n) to Benford’s law distribution Q (n). In contrast to this, the higher DBC ,
the closer the observed distribution P (n) to Benford’s law distribution Q (n).

After this, the Rician noise level σ of the MRI is estimated as a function of
the selected measure D:

σ ≈ f (D) (4)

where f is estimated by machine learning regression techniques.

3 Experimental Setting

Three types of experiments are presented. First of all, we verify the distribution
of the first digit of voxels values of a 3D MRI in the frequency domain resembles
Benford’s law. Secondly, we check if the noise in an image disturbs Benford’s law
probability distribution. Finally, we propose three types of models to predict the
quantity of noise in an MRI.

A total of 75 T1-weighted brain MRIs were selected, being publicly accessible
with a non-restrictive license available in Mindboogle [10], from healthy partici-
pants, and of high quality to ensure right noise analysis. The images in NIfTI for-
mat come from 4 repositories: 12 from HLN [17] with dimension 256×256×170,
21 from MMRR [14] with dimension 170 × 256 × 256, 20 from NKI-RS [18] and
20 from NKI-TRT [18] with dimension 192 × 256 × 256.

Using all the MRI voxels, the FFT is computed and the probability distri-
bution of each voxel’s frequency of the first digit is constructed. Finally, all the
images in the Fourier domain are assessed to follow a distribution that matches
Benford’s law. Then, for each image, 20 new images with noised values were
generated varying the distortion in the range [0, 10) percent of Rician noise with
respect to the amplitude of the signal, following a uniform continuous distri-
bution. Thus, for each repository, we have a new image data set. As explained
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(a) HLN (b) MMRR

(c) NKI-RS (d) NKI-TRT

Fig. 2. Evolution of Bhattacharyya coefficient as noise increases in four image reposi-
tories. Average is in green diamond and median in red line. (Color figure online)

in Sect. 2, two methods are used to measure the similarity with Benford’s law:
BC, belonging to the range [0, 1], where it will be 0 if there is no overlap and
1 if it matches perfectly; and KL divergence, where 0 indicates that the two
distributions in question are identical. Since Benford’s law appears to be a noise
detector, three types of regressors were used to predict the noise in an image:
Linear Regression (LR), Polynomial Regression of degree two (PR) and, Ran-
dom Forest (RF). The data were split into training (80%) and testing (20%)
samples selected from each dataset to validate the considered models.

In order to assess the accuracy of the estimation (4), the Mean Squared
Error is employed. In addition, the regression score function, also known as the
coefficient of determination, was used to measure the goodness of fit:

MSE =
1
M

M∑

i=1

(σi − f (Di))
2 , R2 = 1 − σ2

r

σ2
(5)

where M is the total number of test images, σ is the variance of the dependent
variable, and the residual variance is σr.

In this work, a PC with Intel Core 7 CPU, 32 GB RAM, a NVIDIA TRX2080
Super Ventus, and 1 TB of SSD was used, running under Ubuntu 20.04, and using
Python 3.8. The scientific libraries matplotlib, nibabel, scipy, sklearn, and benford
[16] were used. All models were trained using default parameters1.

1 The source code with scripts and sample data is available in: https://github.com/
icai-uma/RicianNoiseEst 3DMRI BenfordsLaw.git.

https://github.com/icai-uma/RicianNoiseEst_3DMRI_BenfordsLaw.git
https://github.com/icai-uma/RicianNoiseEst_3DMRI_BenfordsLaw.git
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(a) HLN (b) MMRR

(c) NKI-RS (d) NKI-TRT

Fig. 3. Evolution of Kullback-Leibler divergence as noise increases in four image repos-
itories. Average is in green diamond and median in red line. (Color figure online)

4 Results

The high quality of the original datasets ensures the right surface reconstruction
without noise, and the evidence is shown in Figs. 2 and 3. When no noise is
added, i.e. 0.0, BC takes values close to 1 and KL values close to 0, especially in
HLN and MMRR. The values of BC and KL in NKI-RS and NKI-TRT might be
due to the lack of enough quality in the acquisition protocol since BC is between
0.998 and 0.999, and KL is not so close to 0.005. Nevertheless, for all repositories,
the overall trend remains presenting very good values of BC and KL without
noise. Thus, we accept that a noiseless MRI in the Fourier frequency domain
follows Benford’s law.

Table 1. MSE and R2 results of the prediction models by using the Bhattacharyya
Distance and Kullback-Leibler divergence for all datasets. MSE is multiplied by 10−5

Metric Bhattacharyya coefficient Kullback-Leibler

Regressor LR PR RF LR PR RF

Dataset MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2

HLN 11.94 0.82 1.87 0.97 2.57 0.96 11.79 0.82 1.83 0.97 2.62 0.96

MMRR 16.93 0.81 5.37 0.94 6.98 0.92 16.58 0.82 5.039 0.94 5.39 0.94

NKI-RS 7.92 0.89 5.76 0.92 6.98 0.91 8.25 0.88 6.09 0.92 8.42 0.89

NKI-TRT 4.98 0.94 4.18 0.95 6.02 0.93 5.15 0.94 4.33 0.95 5.54 0.93

With the addition of noise in the image, the results shown in Figs. 2 and 3
indicate that the first digit distribution of an image changes. A dependency
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between noise and the parameter’s value is clearly appreciated. The more noise
is introduced into the image, the farther the distribution is from Benford’s law.
NKI-RS and NKI-TRT present a nearly linear decrease trend in BC and an
approximately linear growth trend in KL. On the contrary, the HLN and MMRR
repositories show a fast decrease in BC and a rapid KL increase. NKI-TRT
boxes are the most extensive compared to other repositories showing a more
considerable distance between quantiles, but NKI-TRT has no outliers.

Now, the results of estimating the noise level by means of the regression
techniques mentioned above are presented. Note that BC and KL measures have
a significancy in the order of 10−3. The results of MSE presented in Table 1 are
in the order of 10−5, indicating good results with two orders of magnitude lower
of the parameters. Besides, in the same table, the R2 shows values close to 1 in
general, so the models fit the data well globally. The best results are generated
by PR and followed by RF, and finally LR. The worst results are obtained using
LR for MMRR repository and the best are for the PR model with HLN. Models
and training data are represented in Figs. 4 and 5. The models fit the training
data well without losing test accuracy. As more noise is added, the BC and KL
values have a wider range.

(a) HLN (b) MMRR

(c) NKI-RS (d) NKI-TRT

Fig. 4. Bhattacharyya Coefficient training data (black dots) are displayed along with
the three models (LR in red, PR in green and RF in blue) in four repositories. (Color
figure online)
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(a) HLN (b) MMRR

(c) NKI-RS (d) NKI-TRT

Fig. 5. Kullback-Leibler divergence training data (blue dots) are displayed along with
the three models (LR in red, PR in blue and RF in green) in four repositories. (Color
figure online)

5 Conclusions

In this work, we have shown that the coefficients of the Fourier transform of a T1
MRI follow Benford’s law, that is, their first digit distribution is logarithmic. We
also demonstrate that the amount of Rician noise present in an image directly
affects the first digit distribution of the Fourier transform of a T1 MRI, making
it deviate from Benford’s law. Hence, by measuring the level of agreement of the
distribution of the first digits of the Fourier coefficients with Benford’s law, using
the the Bhattacharyya coefficient and the Kullback-Leibler divergence, one can
estimate the noise level in a T1 MRI.

In addition, in this paper we show that supervised learning techniques allow
estimating the noise level, using the distribution dissimilarity measures men-
tioned above as regressors. Although not all the datasets have a optimal qual-
ity, our experiments over MRIs of 75 individuals confirm that Benford’s law
is fulfilled by the Fourier coefficients of noiseless T1 MRIs and that it can be
properly used to precisely estimate the noise level, since all the error measures
followed a similar tendency. Therefore, further works on denoising algorithms
could integrate this methodology to estimate the level of noise. This will make
the algorithms work better and have a direct implication in improving radiolo-
gists’ diagnoses.

To sum up, our work presents an empirical demonstration of the proposed
hypothesis of Benfords law in the frequency domain and its novel use as a noise
estimator with the help of machine learning, providing very promising results.
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It must be highlighted that more than one image quality metrics (IQMs) may
be required to faithfully evaluate the noise level of an image. Therefore, our
proposal is a significant achievement in the search for reliable IQMs.
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