
Revisiting Algorithms for Fuzzy Concept
Lattices⋆

Domingo López-Rodŕıguez[0000−0002−0172−1585], Ángel
Mora[0000−0003−4548−8030], and Manuel Ojeda-Hernández[0000−0003−4785−6802]

Departamento de Matemática Aplicada, Universidad de Málaga, 29071 Málaga, Spain
{dominlopez, amora, manuojeda}@uma.es

Abstract. A central notion in Formal Concept Analysis is the concept
lattice. This lattice allows describing a hierarchical biclustering between
objects and attributes of a formal context, whose hierarchy is defined
by an order that expresses the specialisation-generalisation relationship
between concepts. It is a fundamental way of representing the knowl-
edge implicit in the context. Therefore, in practice, due to its theoretical
complexity, it is necessary to define computationally efficient algorithms
for its calculation. In the literature, several algorithms, using different
approaches, have been proposed for the computation of the lattice in the
classical framework, where the presence of an attribute in an object is
modelled as a binary value, indicating that the attribute is either present
or absent. However, it is possible to extend this framework to take into
account the different degrees to which an attribute could be present in an
object. Through this extension, it is possible to model fuzzy situations
where the attribute is not 100% present in an object, giving flexibility to
the model. In this paper, we review some of the best known algorithms
for the calculation of the concept lattice in the binary version, and we
extend them for the calculation of the fuzzy concept lattice, presenting
the most significant differences with respect to the original binary ver-
sions. In addition, we will present examples of the execution of these new
versions of the algorithms.

Keywords: Formal concept analysis · Concept Lattice · Graded at-
tributes · Algorithms.

1 Introduction

In recent years, Formal Concept Analysis (FCA) is reaching a high degree of
maturity. Only a few decades have passed since the first works of the pioneers, R.
Wille and B. Ganter [21, 11]. The number of publications in the area is increasing,
as well as the direct applications of FCA in emergent and hot topics as Social
Network Analysis [20], Recommender Systems [9, 7], Medical Diagnosis [22, 8],

⋆ This work has been partially supported by the Ministerio de Ciencia, Innovación
y Universidades [FPU19/01467, TIN2017-89023-P, PGC2018-095869-B-I00] and the
Junta de Andalućıa [UMA2018-FEDERJA-001].

2 D. López-Rodŕıguez et al.

E-learning Systems [19, 17] and others. For the non-expert reader, there are many
possible references but we highlight [10] because of the pedagogical vision of the
authors.

Within the classical FCA framework, the knowledge extracted from a binary
table of data (formal context) is essentially represented as two complementary
entities: the concept lattice and a basis of context-valid implications. An interest-
ing research line is the one that studies algorithms to compute both knowledge
entities. The intrinsic exponential nature of the process of building the lattice
and the basis of the implications encourages this line to be very active from the
very beginning. This paper focuses on this line.

In this work, we emphasise the importance of the concept lattice: it represents
an exhaustive analysis of the closed sets according to the well-known derivation
operators forming a Galois connection. That allows us to establish a hierarchical
biclustering of the relationships between objects and attributes.

Let us recall that the number of concepts can be exponential in the size of the
input context and the problem of determining this number is #P-complete [14].
It is therefore necessary to develop algorithms that intelligently exploit the struc-
ture of the lattice itself and the properties of the closure system for the efficient
computation of the concept set. To solve this problem, a wide variety of propos-
als have been made. The most naive one consists of exhaustively enumerating all
possible subsets and then checking which ones are closed. More advanced meth-
ods use pruning strategies to avoid such complete enumeration. For example, the
NextClosure algorithm [11] uses the lectic order of intents. Others are based on
determining the set of all extents by performing a recursive search accompanied
by canonicity tests that allow a more efficient exploration. Those based on the
CbO strategy [13], such as FastCbO (FCbO) [12, 18], or InClose [1] stand out.

The classical FCA framework is extended by considering non-binary rela-
tionships between the objects and attributes, i.e. L-fuzzy relations. The first
approaches were due to Burusco and Fuentes [6] and Bělohlávek [3]. Fuzzy FCA
(FFCA) considers L-contexts ⟨G,M, I⟩ where G is a set of objects, M is a set
of attributes an I is a fuzzy relation between G and M . The interpretation of
I(x, y) is the truth degree to which object x has attribute y.

For FFCA, few algorithms have been developed by adapting the classical
ones to the generalised framework. We highlight [2, 4] as the first approaches
to the problem in this fuzzy setting and emphasise [5], where the authors com-
pute the set of fixpoints of a given fuzzy closure operator, relating fuzzy and
classical closure operators. One might expect that with native fuzzy approaches
the resulting algorithms could be more efficient. Thus, it is interesting to adapt
classical approaches to the fuzzy setting and to promote the research on ad hoc
fuzzy algorithms. The purpose of this work is to generalise other known and
efficient algorithms to FFCA. We analyse their efficiency and see what the most
relevant differences with respect to the binary versions are.

The rest of the work is organised as follows. In Section 2, we present the
background and the most prominent algorithms in classical FCA and in Sec-
tion 3, we show how we have extended the InClose family of algorithms to the

Revisiting Algorithms for Fuzzy Concept Lattices 3

fuzzy setting. We provide an example of the execution of these new versions in
Section 4 and present our conclusions and the future lines of work in Section 5.

2 Preliminaries and related works

In this section we give a brief summary of fuzzy set theory. Throughout the paper,
the reader is expected to be familiar with Formal Concept Analysis notions.

Let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice, that is, (L,∧,∨)
is a complete lattice with 0 and 1 being the least and the greatest elements of
L, respectively, (L,⊗, 1) satisfies ⊗ is commutative, associative, and 1 is neutral
with respect to ⊗, and ⊗ and → satisfy the so-called adjointness property : for
all a, b, c ∈ L, we have that a⊗ b ≤ c iff a ≤ b → c.

An L-set is a mapping X : U → L from the universe set U to the truth
values set L, where X(u) means the degree to which u belongs to X. The set of
L-sets on the universe U is denoted by LU . If U is finite, it is common to denote
fuzzy sets as X = {l1/u1, l2/u2, . . . , ln/un}, where each element ui belongs to X in
degree li. If li = 0, the element ui might be omitted and if li = 1 we denote it by
{ui}. Operations with L-sets are defined element-wise. For instance, A⊗B ∈ LU

is defined as (A⊗B)(u) = A(u)⊗B(u) for all u ∈ U .
Now we turn our focus to the main features of the classical algorithms that

are considered the main background of this work. All of them start from a binary
formal context. For the pseudocode and more details, we refer the reader to the
sources cited in the text.

Although former attempts to compute the maximal rectangles of a binary
relation exist [16], the first proper approach to compute all the formal concepts in
the FCA framework was the NextClosure algorithm [11]. The goal is to compute
all the intents of the formal concepts. Thus, the search space is formed by all
possible attributes subsets. The NextClosure approach differs from that of the
brute force since it introduces a pruning strategy when exploring the search
space, based on the introduction of an order (called lectic order) between the
sets of attributes.

NextClosure begins with the computation of the closure of the empty set.
After this closure computation, the algorithm recursively enumerates the next
closed sets in the lectic order. It is well-known that the complexity is exponential
in the worst case, but it is interesting to know that the algorithm has a polyno-
mial delay, O(|G||M |2) searching all the intents or O(|G|2|M |) searching all the
extents. This fact establishes an upper bound to compute one concept.

Krajča et al. [12] presented a survey on algorithms for computing formal con-
cepts. The authors said “the major issue of widely-used algorithms for computing
formal concepts is that some concepts are computed multiple times which brings
significant overhead”. Close-by-one (CbO) [13] proposed an interesting line to
reduce this overhead and, at present, the faster algorithms follow the frame-
work posed by CbO. Kuznetsov’s algorithm builds a tree where nodes represent
computed closures, and edges connecting two closures A,B (into two nodes) are
labelled by attributes {y} connecting them when B is the closure of A ∪ {y}.

4 D. López-Rodŕıguez et al.

With respect to CbO, Fast Close-by-One (FCbO) [12, 18] achieves a reduction
of the number of concepts which are computed multiple times, including an ad-
ditional canonicity test. Currently, FCbO is one of the main methods to compute
formal concepts having parallelizable versions and several new improvements.

In this paper, due to its simplicity of implementation, we focus on another
highly efficient algorithm named InClose [1]. It uses incremental closure and
matrix searching as key features to achieve a faster method. InClose avoids to
repeat the computation of closures and only computes a closure per concept in
an incremental way. We propose fuzzy extensions for the different versions of the
In-Close algorithm in the literature. We implement and compare the results of
the algorithms in the following sections.

3 Extension of the algorithms to the fuzzy setting

The topic of discussion in this section will be the extension of the classical
FCA algorithms to a fuzzy setting. Let L = (L, 0, 1,∧,∨,⊗,→) be a complete
residuated lattice. Since all our sets of objects and attributes are finite, without
loss of generality we will consider L to be finite as well. This is because the set
{I(x, y)}x∈G,y∈M is finite and we can consider L′ to be the smallest complete
lattice such that {I(x, y)}x∈G,y∈M ⊆ L′ ⊆ L. The complete lattice L′ exists and
is finite, the proof is not the goal of this paper so it is omitted.

In classical algorithms such as InClose2, introduced by Andrews [1], the code
runs for each attribute m ∈ M . The difference in the fuzzy case is that we have
to consider the degrees of each attribute, hence the run of the algorithm will
take the first attribute m1 and run through all the different truth values in L.
This tour on the possible degrees could go either forward or backwards through
the elements of L. The choice taken so far is to run backwards on L in order to
avoid redundant cycles. For instance, there is no point in adding to the set B
all the degrees of an attribute one by one {0.1/m1, 0.2/m1, . . . , 1/m1} since running
backwards the code would add {1/m1} = {m1} directly, thus saving computation
time.

The FuzzyInClose2 algorithm is the fuzzy extension to Andrews’ InClose2.
In Algorithm 1, the procedure is initialised. For this, only the formal context is
needed, then the auxiliary function InClose2 ChildConcepts is called with the
initial extent G, intent ∅, attribute index 0 and concept list C = ∅.

Algorithm 1: FuzzyInClose2(K)

Input: K = (G,M, I): A formal context with grades in
L = {0 < l1 < . . . < ln = 1}

Output: B(K): The concept lattice of K.
1 C := ∅
2 InClose2 ChildConcepts(G, ∅, 0, C)
3 return B(K) = C

Revisiting Algorithms for Fuzzy Concept Lattices 5

The auxiliary function used above is the one represented in Algorithm 2
below. This is the one that actually extends the InClose2 algorithm to the fuzzy
framework and performs the recursive search. Notice how in line 3 we make k
range from n to 1, this is notation for running through the elements of L in a
decreasing order.

Algorithm 2: InClose2 ChildConcepts(A, B, y, C)
Input: A: An extent; B: The intent corresponding to A, that will be

completed in this execution; y: index of the attribute where to start
the exploration of this branch; C: the global variable where to
accumulate the computed concepts.

1 Q := ∅
2 for j ∈ {y + 1, . . . , |M |} do
3 for k ∈ {n, . . . , 1} do
4 g := lk
5 if B ∩ {mj} ⊊ {g/mj} then

6 C := A ∩ {g/mj}↓

7 if C↑ ∩ {mj} = {g/mj} then
8 if C = A then
9 B := B ∪ {g/mj}

10 else

11 if B ∩Mj = C↑j then
12 Q := Q ∪ {(C, j, k)}

13 C := C ∪ {(A,B)}
14 for (C, j, k) ∈ Q do
15 D := B ∪ {lk/mj}
16 InClose2 ChildConcepts(C, D, j, C)

Remark 1. The notation of the pseudocode may look cumbersome. It is done set-
theory style in order to maximize the amount of information given to the reader.
However, from the coding point of view, the computation of the algorithms is
much simpler due to the use of fuzzy-set notation. For instance, in Algorithm 4,
in line 5, when it reads B ∩ {mj} ⊊ {g/mj} in fuzzy-set notation this is just
B(mj) < g.

Notice that prior to line 1 it is required that A is an extent. The algorithm
starting with A = G ensures this since G is always an extent and all ramifications
of the algorithm are built as intersections ofG with attribute-extents, that always
give other extents. It is also required that B is the intent corresponding to A
accumulated over the course of the execution branch that has led to this node.
Note that B will be completed in the current level of recursion. Hence, B ⊆ A↑

is needed. This is ensured in the first iteration of the algorithm since B = ∅,

6 D. López-Rodŕıguez et al.

through all the ramifications this still holds, although it cannot be seen that
trivially.

Line 1: Initialize a list Q as empty.
Line 2: Iterate across the formal context, from a starting attribute y + 1 up

to attribute n, where n is the number of attributes in the context.
Line 3: Iterate across the truth values in L backwards and...
Line 4: ... call the current truth value g.
Line 5: Skip attributes already in B, since the truth values are gone through

in decreasing order, B ∩ {mj} ̸= ∅ implies mj belongs to B in a higher degree
than g, so this can be skipped too.

Line 6: Form an extent, C, by intersecting the current extent, A, with the
next column of objects in the context with degree g.

Line 7: Skip all g such that C↑ ∩{mj} ≠ {g/mj}. This is a partial canonicity
test because in this iteration we are focused only on g.

Line 8: ... if C = A, then...
Line 9: ... add {g/mj} to the set B...
Lines 10 and 11: ... else, for the canonicity test, if the partial intent of C up

to j is exactly B restricted to the first j − 1 attributes...
Line 12: ... store (C, j, k) ∈ Q...
Line 13: Store the concept (A,B) in the list C...
Line 14: For each extent C, attribute mj and truth value lk stored in Q...
Line 15: Create the intent D = B ∪ {lk/mj}.
Line 16: Call InClose2 ChildConcepts to compute the child concepts of C

starting from the attribute mj and complete the intent D.
It is interesting to remark that in line 7 the calculation of C↑ ∩ {mj} does

not require the computation of the intent since it is simply

(C↑ ∩ {mj})(mj) = C↑(mj) =
∧
o∈G

(C(o) → I(o,mj)) .

Similarly, the computation of the intent C↑j is not needed since it follows from
the previous formula: the implementation would only present a loop over the
attributes i < j, computing C↑ ∩ {mi} using the formula above, and stopping
early when (C↑ ∩ {mi})(mi) = C↑(mi) ̸= B(mi) = B ∩ {mi}.

InClose2 has been proved to be correct and fairly quick timewise, even though
it does several redundant computations. For instance, assume that A∩ {lk/mj}↓
is empty. Then, for all child concepts from this extent on, it follows trivially
that C ∩ {lk/mj}↓ = ∅, hence this iteration may be skipped with no loss of
information. This is taken into account in a series of algorithms called InClose4,
introduced by Andrews [1] as well. Actually, there are two variations of InClose4
which are called InClose4a and InClose4b. In these algorithms a list P is added
to the parameters in order to track the empty intersections in all the child
extent iterations. This way, several calculations are skipped and thus, runtime
is shortened.

Next, we give some details of the differences between FuzzyInClose2 and
FuzzyInClose4a. Due to space reasons, only the pseudocode of FuzzyInClose4b
is displayed, since it is the fastest and the less computation demanding.

Revisiting Algorithms for Fuzzy Concept Lattices 7

The main method FuzzyInClose4a only differs from the InClose2 version in
that the auxiliary function, now called InClose4a ChildConcepts, requires an
extra argument, P , that keeps track of the empty intersections occurring in a
branch of the execution, and that is initially empty.

There are subtle changes in lines 5, 11 and 12 of InClose2a ChildConcepts

that improve it to InClose4a ChildConcepts.

Line 5 Skip all attributes that are already in B in degree g or higher or in
P in degree g or lower.

Line 5 in InClose4a: we can omit all attributes that are already in B in degree
g or higher or in P in degree g or lower, by performing the check B ∩ {mj} ⊊
{g/mj} and (P ∩ {mj} = ∅ or {g/mj} ⊊ P ∩ {mj}).

After line 10 Before performing the canonicity test B ∩ Mj = C↑j in line
11 (Algorithm 2), the fuzzy version of InClose4a will check if the new extent is
empty, thus updating P , the record of empty intersections, accordingly: if C = ∅
then P := {g/mj} ∪ (P ∖ {mj}). The update of P is designed to keep track of
the minimal degree g for which the computation of the extent C provides the
empty set. Thus, the condition in line 5 will be optimal and reject all the cases
that inherit the empty intersection.

Notice that the execution of FuzzyInClose4a(K) computes all the extents
of the given context from G to ∅, in case ∅ is indeed an extent.

Another algorithm that blends the spirit of FuzzyInClose2 and the avoiding
empty intersections of FuzzyInClose4a is the so-called FuzzyInClose4b algo-
rithm.

Algorithm 3: FuzzyInClose4b(K)

Input: K = (G,M, I): A formal context with grades in
L = {0 < l1 < . . . < ln = 1}

Output: B(K): The concept lattice of K.
1 C := ∅
2 InClose4b ChildConcepts(G, ∅, 0, ∅, C)
3 if M↓ = ∅ then
4 C := C ∪ {(∅,M)}
5 return B(K) = C

Introduced in the classical FCA by Andrews [1], InClose4b keeps the idea
of skipping empty intersections to speed up the code but checks this condition
earlier in the process. As we can see in Algorithm 4, lines 8 and 9, the filter of
the extent C being empty is applied before than in FuzzyInClose4a, where this
is done in lines 11 and 12. This makes it faster to discard empty intersections,
but it comes with a price. Originally, there were extents not computed by this
algorithm. Fortunately, this occurs only once and it is the extent ∅, in the case
it is indeed an extent. This is a small price to pay and it is solved in Algorithm 3,
lines 3 and 4, where a direct check on (∅,M) being a formal concept is made
and, if it is, it is stored in C.

8 D. López-Rodŕıguez et al.

Algorithm 4: InClose4b ChildConcepts(A, B, y, P , C)
Input: A: An extent; B: The intent corresponding to A, that will be

completed in this execution; y: index of the attribute where to start
the exploration of this branch; P : record for empty intersections; C:
the global variable where to accumulate the computed concepts.

1 Q := ∅
2 for j ∈ {y + 1, . . . , |M |} do
3 for k ∈ {n, . . . , 1} do
4 g := lk
5 if B ∩ {mj} ⊊ {g/mj} and (P ∩ {mj} = ∅ or {g/mj} ⊊ P ∩ {mj})

then

6 C := A ∩ {g/mj}↓

7 if C↑ ∩ {mj} = {g/mj} then
8 if C = ∅ then
9 P := (P∖{mj}) ∪ {g/mj}

10 else
11 if C = A then
12 B := B ∪ {g/mj}
13 else

14 if B ∩Mj = C↑j then
15 Q := Q ∪ {(C, j, k)}

16 C := C ∪ {(A,B)}
17 for (C, j, k) ∈ Q do
18 D := B ∪ {lk/mj}
19 InClose4b ChildConcepts(C, D, j, P , C)

4 An example

In this section, we present an example of the implementation of the fuzzy versions
FuzzyInClose2, FuzzyInClose4a and FuzzyInClose4b. Due to space restric-
tions, we cannot present the complete trace of the execution of these algorithms.
However, we have chosen to present this trace in graphical form, so it is possible
to check the different steps followed by each of these algorithms. For this work, we
have implemented the algorithms using the functionalities provided by the fcaR
package [15] in the R programming language and used those implementations
for the example in this section.

In this example, we consider the formal context of Table 1, where the set of
grades for the attributes M = {a, b, c, d, e} is L = {0, 1/2, 1}. It is not a large
context in order to make the execution graphs legible.

The first of the tested versions is FuzzyInClose2. In Figure 1, we can check
the order in which the extent intersections are computed in this algorithm. Start-
ing with∅, the first level of recursion (intersection ofG with all attribute extents)
is carried out from left to right, in the attribute order defined in the previous

Revisiting Algorithms for Fuzzy Concept Lattices 9

Table 1. Simple formal context for the example.

a b c d e

o1 0 0 1⁄2 0 1
o2 1 1⁄2 1⁄2 0 1⁄2
o3 1⁄2 1⁄2 0 1⁄2 1⁄2

section. We have used a colour code to indicate the possible situations that can
occur when checking a given node: a red box indicates that the canonicity test
has failed at that point; a light orange box indicates that the partial canonicity
test is not passed; and a grey box appears when parent and child nodes have the
same extent, so the intent of the parent is updated. Once the whole level has
been checked, we start to develop the branches in the next phase of the recursion,
going through the nodes from left to right. So, under the node labelled {a}, we
start to develop its branch, following exactly the same procedure as before: we
have to go through all the attributes/degrees starting from the attribute {b},
and then develop the leftmost branch that is not developed at that moment.
Repeating the process, we arrive at 5 levels of recursion for the calculation of all
concepts.

Fig. 1. Order of computations performed by the fuzzy version of InClose2.

The execution graphs for FuzzyInClose4a and FuzzyInClose4b, which take
into account the occurrence of empty intersections at each level of recursion of
the algorithm, are presented in Figure 2 below. These empty intersections are
inherited downwards in the branches arising from that level of recursion, and
allow to reduce the number of operations to be performed, as well as the depth

10 D. López-Rodŕıguez et al.

of the recursion. The same colour code is used as in Figure 1, adding the blue
boxes to represent iterations where an empty extent was found.

Fig. 2. Order of computations performed by the fuzzy version of InClose4a (up) and
InClose4b (down).

As can be seen, there is no great difference, at least in this example, between
the two proposals, although there is a clear reduction in the computational load
with respect to our baseline of comparison, the FuzzyInClose2 method. We can
see that, instead of 5 levels of recursion, in the FuzzyInClose4 family, only 4
appear. Due to the different characteristics of both methods, it is to be expected
that in larger contexts differences will appear and that, probably, they will be in
favour of the FuzzyInClose4b variant, since it makes a greater pruning in the
exploration of the graph of intersections of extents.

Finally, we present in Table 2 a quantitative comparison of the number of
operations carried out by each algorithm. We will only count computationally
expensive operations: partial canonicity tests, i.e., checks of C↑∩{mj} = {g/mj};
complete canonicity tests, as in the binary case, on the equality B ∩Mj = C↑j ;
and the number of attribute intents computed and the number of intersections of
extents. In this table we show the number of such operations for each algorithm.

Table 2. Number of computations performed by each of the algorithms for the dataset
in Table 1.

Algorithm Partial tests Full tests #Intents #Extents

FuzzyInClose2 49 29 97 50
FuzzyInClose4a 41 29 89 42
FuzzyInClose4b 33 25 74 42

Revisiting Algorithms for Fuzzy Concept Lattices 11

In the table, different facts can be observed. On the one hand, looking at
the #Extents column, we can see how versions 4a and 4b of the algorithm build
smaller execution graphs, since the number of intersections coincides with the
number of nodes explored in the execution of the graph. On the other hand,
although the execution graph is the same for versions 4a and 4b, the different
strategy for exploiting empty intersections produces a clear reduction in the
number of operations to be carried out, since fewer tests, both partial and com-
plete, are checked. Thus, the exploration carried out by FuzzyInClose4b is more
efficient and, for larger contexts, could be the fastest of the 3 algorithms.

5 Conclusions and future work

The concept lattice is a fundamental way of representing the knowledge implicit
in the context. In the literature, several algorithms, using different approaches,
have been proposed for the computation of the lattice in the classical framework.
In this paper some of the extensions of these algorithms to the fuzzy framework
have been introduced. These algorithms are of the family of InClose. After a
brief explanation of the code, an example was shown to illustrate the trace of
the different approaches. Lastly, the algorithms are compared taking into account
runtime, number of test calculations and number of extents computed.

As a future work, we devise to study several optimisations to the InClose4
family, taking advantage of the structure of the degrees in L. The aim of the
possible optimisations will be to reduce the number of computations both of
intents and extents, hence reducing the computational cost of the algorithm.

Furthermore, we aim to explore generalisations of other algorithms, such
as the FastCbO family or the NextNeighbour or NextPriorityConcept, for the
fuzzy setting, along with different optimisations that could alleviate the greater
computational cost when compared to the binary case. We want to perform a
thorough comparison between the different versions of the algorithms in terms of
execution time and the number of computations required to compute the fuzzy
concept lattice. We expect to incorporate the implementation of all algorithms
for lattice computation in the fuzzy framework into the above-mentioned fcaR

package.
Other research line for future works will study the extension of the provided

algorithms to compute the canonical basis of implications in this fuzzy setting.
It has already been proved that, in the binary case, CbO-like algorithms can be
modified to provide such a basis. We aim to extend the fuzzy versions of the
algorithms to compute the basis.

References

1. Andrews, S.: Making use of empty intersections to improve the performance of
CbO-type algorithms. In: In.Conference on Formal Concept Analysis. pp. 56–71.
Springer (2017)

12 D. López-Rodŕıguez et al.

2. Belohlavek, R.: Algorithms for fuzzy concept lattices. In: Int. Conf. on Recent
Advances in Soft Computing. pp. 200–205 (2002)

3. Belohlavek, R.: Fuzzy relational systems: foundations and principles, vol. 20.
Springer Science & Business Media (2002)

4. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Lindig’s algorithm for
concept lattices over graded attributes. LNCS 4617, 156–167 (2007)

5. Belohlavek, R., Konecny, J.: Fixpoints of fuzzy closure operators via ordinary algo-
rithms. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
pp. 1–6 (2017)

6. Burusco-Juandeaburre, A., Fuentes-González, R.: The study of the L-fuzzy concept
lattice. Mathware and Soft Computing 1(3), 209–218 (1994)

7. Chemmalar Selvi, G., Lakshmi Priya, G.G.: Rating prediction method for item-
based collaborative filtering recommender systems using formal concept analysis.
EAI Endorsed Transactions on Energy Web 8(33) (2021)

8. Cordero, P., Enciso, M., López, D., Mora, A.: A conversational recommender sys-
tem for diagnosis using fuzzy rules. Expert Systems with Applications 154 (2020)

9. Cordero, P., Enciso, M., Mora, Á., Ojeda-Aciego, M., Rossi, C.: A formal concept
analysis approach to cooperative conversational recommendation. Int.Journal of
Computational Intelligence Systems 13(1) (2020)

10. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer Berlin Heidelberg
(2016)

11. Ganter, B.: Two basic algorithms in concept analysis (1984), FB4-Preprint 831.
Darmstadt, Germany: Technische Hochschule Darmstadt

12. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In:
CLA. vol. 672, pp. 325–337. Citeseer (2010)

13. Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite
semi-lattice. Automatic Documentation and Mathematical Linguistics 27, 11–21
(1993)

14. Kuznetsov, S.O.: Interpretation on graphs and complexity characteristics of a
search for specific patterns. Automatic Documentation and Mathematical Linguis-
tics 24(1), 37–45 (1989)

15. López-Rodŕıguez, D., Mora, A., Domı́nguez, J., Villalón, A., Johnson, I.: fcaR:
Formal Concept Analysis (2020), https://cran.r-project.org/package=fcaR

16. Norris, E.M.: An algorithm for computing the maximal rectangles in a binary
relation. Revue Roumaine de Mathématiques Pures et Appliquées 23(2), 243–250
(1978)

17. Ojeda-Hernández, M., Pérez-Gámez, F., Mora Bonilla, Á., López-Rodŕıguez, D.:
Using logic to determine key items in math education. In: 15th International Con-
ference e-Learning, EL 2021. pp. 62–69 (2021)

18. Outrata, J.: A lattice-free concept lattice update algorithm based on* CbO. In:
CLA. vol. 2013, pp. 261–274. Citeseer (2013)

19. Priss, U.: A preliminary semiotic-conceptual analysis of a learning management
system. In: Procedia Computer Science. vol. 176 (2020)

20. Salman, H.E.: Feature-based insight for forks in social coding platforms. Informa-
tion and Software Technology 140, 106679 (2021)

21. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets. pp. 445–470. Springer Netherlands, Dor-
drecht (1982)

22. Zheng, F., Cui, L.: A lexical-based formal concept analysis method to identify
missing concepts in the NCI thesaurus. In: Proceedings - 2020 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2020 (2020)

