
fcaR, Spreading FCA to the Data Science World
?

Pablo Cordero1[0000�0002�5506�6467], Manuel Enciso2[0000�0002�0531�4055],
Domingo López-Rodríguez1[0000�0002�0172�1585], and Ángel

Mora1[0000�0003�4548�8030]

1 Departamento de Matemática Aplicada, Universidad de Málaga
{pcordero,dominlopez,amora}@uma.es

2 Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga
enciso@uma.es

Abstract. Formal concept analysis (FCA) has become a mature tool
for extracting helpful knowledge for real problems based on solid mathe-
matical foundations rooted in logic and lattice theory. However, in areas
such as machine learning, big data, artificial intelligence, database, etc.
remains a stranger. The R language is one of the main languages used
in data science, and this work describes an R package called fcaR that
implements FCA’s core notions and techniques. One of the main goals
is to spread FCA to the rest of the world. The main facilities of the tool
are shown with a running example.

Keywords: R programming language · Data science · Formal concept
analysis

1 Introduction

We assume the main FCA works [1, 2] are known and show in this short intro-
duction some features of the developed package and the main references of the
mathematical methods developed in fcaR.

Classic FCA is devoted to the study of binary datasets (formal contexts)
where variables are called attributes. Extensions of FCA (see [3, 4]) have been de-
veloped to model real-world problems for datasets containing imprecise, graded
or vague information that is not adequately represented as binary values. This
fuzzy extension is able to model problems with numerical and categorical at-
tributes since these can be scaled to a truth value describing the degree of ful-
filment of the attribute.

As it is well known, from a dataset (binary or fuzzy), FCA can compute
maximal clusters, named concepts, between objects and attributes with a hier-
archy between the concepts and relationships between the attributes (rules or
implications) are computed with the same computational cost in FCA.

We emphasize the notion of if-then rules as a efficient way to compact knowl-
edge and and enable automatic handling by using logic. In this direction, [5] in-
troduced a logic, named simplification logic for functional dependencies (SLFD),
? Supported by Grants TIN2017-89023-P, UMA2018-FEDERJA-001 and PGC2018-

095869-B-I00 of the Junta de Andalucia, and European Social Fund.

c� Pablo Cordero, Ondrej Kŕıdlo (Eds.): CLA 2022, pp. 201–207.

firmly based on a simplification rule, which allows us to narrow the functional
dependency set by removing redundant attributes. Although the semantic of
implications or if-then rules in other areas are different, the logic can be used
too. Using directly SLFD, some automated deduction methods directly based
on this inference system have been developed for classical systems and fuzzy
systems [6–10].

Also, a generalization of SLFD to the fuzzy framework [11] was developed.
FASL, fuzzy attribute simplification logic, has become a helpful reasoning tool
for the fuzzy extension.

As we have said, one of the main goals of the fcaR package is to provide a
user-friendly computational interface to the principal operators and methods of
binary-fuzzy FCA, including the mentioned logic tools. The use of R language
can spread FCA to others communities.

As of today the package has 21 000 downloads, published in CRAN repos-
itories (https://cran.rstudio.com/web/packages/fcaR/index.html) with a living
live cycle https://github.com/Malaga-FCA-group/fcaR and with vignettes to
spread the package https://neuroimaginador.github.io/fcaR/.

The work is organized as follows: Section 2 describes the internal classes
implemented in the library. Section 3 shows how to use the package. In Section 4,
a real application of the package is shown Finally, some conclusions and future
works are presented in Section 5.

2 Structure of fcaR

The fcaR package provides data structures which allow the user to work seam-
lessly with formal contexts and sets of implications. More explicitly, the follow-
ing main classes are implemented, using the R6 object-oriented-programming
paradigm in R:

– FormalContext encapsulates the definition of a formal context (G,M, I),
being G the set of objects, M the set of attributes and I the (fuzzy) rela-
tionship matrix, and provides methods to operate on the context using FCA
tools.

– ImplicationSet represents a set of implications over a specific formal con-
text.

– Set encapsulates a class for storing variables (attributes or objects) in an
efficient way.

As an advantage, object oriented programming style of R language and all
the knowledge (concepts, implications, minimal generators, etc.) will be stored
inside the formal context object fc.

The main and computationally hard methods of FCA have been developed
in C and linked to fcaR.

202 P. Cordero et al.

3 fcaR

In this section, we present the very essential methods in the FCA framework
using a well-known running example about planets. From a dataset, we build an
formal context object, named fc, in R using the function FormalContext.

small medium large near far moon no_moon

Mercury ⇥ ⇥ ⇥
Venus ⇥ ⇥ ⇥
Earth ⇥ ⇥ ⇥
Mars ⇥ ⇥ ⇥
Jupiter ⇥ ⇥ ⇥
Saturn ⇥ ⇥ ⇥
Uranus ⇥ ⇥ ⇥
Neptune ⇥ ⇥ ⇥
Pluto ⇥ ⇥ ⇥

Table 1. Planets dataset.

Sets of attributes or objects will be stored in variables of type Set. For the
variable fc containing the formal context, a list of some methods are available:
fc$clarify(), fc$attributes, fc$objects, fc$concepts, fc$implications,
etc.

As an example, with the planets dataset (Table 1), we compute the intent,
extent and the closure of a set of attributes:

> set_objetcs <- Set$new(fc$objects)

> set_objetcs$assign(Mars = 1, Earth = 1)

> fc$intent(set_objetcs)

{small, near, moon}

> set_attributess1 <- Set$new(fc$attributes)

> set_attributess1$assign(medium = 1, far = 1)

> fc$extent(set_attributess1)

{Uranus, Neptune}

> set_attributess2 <- Set$new(fc$attributes)

> set_attributess2$assign(medium = 1)

> fc$closure(set_attributess2)

{medium, far, moon}

To extract knowledge, we will use some methods associated to the variable
fc. Some concepts and implications are shown next:

> fc$find_concepts()

> fc$concepts[3:4]

fcaR, Spreading FCA 203

A set of 2 concepts:

1: ({Jupiter, Saturn, Uranus, Neptune, Pluto}, {far, moon})

2: ({Jupiter, Saturn}, {large, far, moon})

> fc$find_implications()

> fc$implications[1:2]

Implication set with 2 implications.

Rule 1: {no_moon} -> {small, near}

Rule 2: {far} -> {moon}

And for the concepts and implications (inside the variable fc) we could use
the main methods and algorithms developed:

– For concepts: ìnfimum(), supremum(), top(), bottom(), plot(), size(),
join_irreducibles(), meet_irreducibles(), lower_neighbours(), etc.

– For implications: apply_rules(), cardinality(), to_basis(), filter(),
etc.

4 A case of study

In this section, a real case of study showing fcaR on real-world problems is pre-
sented. The goal is to extract knowledge about the features of tourist destinations
given a user profile.

The dataset vegas (see more information in the package) stores more than
500 TripAdvisor reviews of hotels in Las Vegas Strip. The main attributes are:

– Period of Stay: 4 categories are present in the original data, which pro-
duces as many binary variables: Dec-Feb, Mar-May, Jun-Aug and Sep-Nov.

– Traveler type: five binary categories are created from the original data:
Business, Couples, Families, Friends and Solo.

– Pool, Gym, Tennis court, Spa, Casino, Free internet: binary variables for
the services offered by each destination hotel.

– Stars: five binary variables are created, according to the number of stars of
the hotel, 3, 3.5, 4, 4.5 and 5.

– Score, the score assigned in the review, from 1 to 5, five variables are created.

We can load the dataset, create a FormalContext object, and compute con-
cepts and implications with:

> data(vegas)

> fc <- FormalContext$new(vegas)

> fc$find_implications()

In this case, it is complicated to visualize the lattice with 2082 concepts, thus
we opt for plotting a sublattice where we impose a minimum support:

204 P. Cordero et al.

{}

{Free internet} {Casino}

{Casino, Free internet}

{Gym}

{Gym, Free internet} {Gym, Casino}

{Gym, Casino, Free internet}

{Pool}

{Pool, Free internet} {Pool, Casino}

{Pool, Casino, Free internet}

{Pool, Gym}

{Pool, Gym, Free internet} {Pool, Gym, Casino}

{Pool, Gym, Casino, Free internet}

This exploration gives some hints about the most important attributes in the
dataset. After that, the set of implications is manipulated to remove redundan-
cies and remove those rules with zero support:

> fc$implications$apply_rules(c("simplification",

+ "composition",

+ "generalization"))

> fc$implications <- fc$implications[fc$implications$support() > 0]

We are now in position to pose the question that must be answered by means
of the extracted knowledge: for a given couple, searching for a hotel in Las Vegas
with Spa, which are the additional services that would make the highest score
(5)?

In order to answer this question, let us begin with a subset of the implications,
those related to couples travelling:

> base_implications <- fc$implications$filter("Traveler type=Couples")

Then, specify the minimum services (Spa) in a Set:

> Setattr1 <- Set$new(fc$attributes)

> Setattr1$assign("Traveler type=Couples" = 1, "Spa" = 1)

And compute the closure by using the simplification logic, since we are in-
terested in the knowledge that can be inferred from the condition given by the
set :

fcaR, Spreading FCA 205

> cl <- base_implications$closure(Setattr1, reduce = TRUE)

> specific_implications <- cl$implications

There are 36 implications representing the knowledge in the formal context
for the required case. Since the problem stated to extract the additional features
needed to get a score of 5, let us filter the new ImplicationSet by this condition
on the RHS removing redundancies previously:

> specific_implications$filter(rhs = c("Score=5"))

Implication set with 5 implications.

Rule 1: {Period of stay=Mar-May, Stars=4.5} -> {Score=5}

Rule 2: {Period of stay=Jun-Aug, Stars=4.5} -> {Score=5}

Rule 3: {Period of stay=Jun-Aug, Tennis court, Stars=3.5} -> {Score=5}

Rule 4: {Period of stay=Dec-Feb, Tennis court, Stars=3.5} -> {Score=5}

Rule 5: {Period of stay=Dec-Feb, Tennis court, Stars=3} -> {Score=5}

From these implications, we can infer the additional services that would make
a perfect stay for the user.

5 Conclusions

The main objective in this work has been the development of an R package
able to be useful not just for the FCA community but in general to perform
knowledge retrieval from binary or fuzzy (graded) datasets. It is the first R
package implementing the core methods in FCA.

To sum up, the fcaR package is designed to:

– Manage formal contexts (datasets), implementing the core notions of formal
concept analysis: objects, attributes, derivation operators, concepts, closures,
implications, etc.

– Extract the concepts and the concept lattice from a context.
– Find implications (exact association rules) that are true in the context.
– Provide tools to visualize the extracted knowledge.
– Implement the simplification logic for fuzzy and binary settings as the core

of automated methods based on logic to remove redundancy in an easy way
(only applying the rules of the logic), to compute closures and make recom-
mendations.

Thus, fcaR implements a wide range of features, and with the help of the
included documentation and vignettes, any user can start analysing datasets
with FCA tools.

From the point of view of efficiency, the fcaR package uses the vectorial and
parallelization capabilities of the R language, whereas algorithmic bottlenecks
have been implemented in C. In addition, we have used sparse matrices as the
main internal data structure of the package.

206 P. Cordero et al.

Currently, the package is under active development of several extensions or
enhancements: improvement of the efficiency of fuzzy algorithms, adding other
algorithms of the FCA community to compute the concept lattice or the impli-
cation basis, or the incorporation of advanced algorithms such as the calculation
of direct bases of implications and minimal generators that have proved useful
in practical applications.

References

1. Wille, R.: Restructuring lattice theory: An approach based on hierarchies
of concepts. In: Ordered sets. pp. 445–470. Springer (1982).

2. Ganter, B., Wille, R.: Formal concept analysis - mathematical founda-
tions. Springer (1999).

3. Belohlávek, R., Vychodil, V.: Attribute dependencies for data with grades
I. International Journal of General Systems. 45, 864–888 (2016).

4. Belohlávek, R., Vychodil, V.: Attribute dependencies for data with grades
II. International Journal of General Systems. 46, 66–92 (2017). https:
//doi.org/10.1080/03081079.2016.1205712.

5. Cordero, P., Enciso, M., Mora, A., P. de Guzmán, I.: SLFD logic: Elimi-
nation of data redundancy in knowledge representation. In: IBERAMIA.
pp. 141–150. Springer (2002).

6. Mora, A., Enciso, M., Cordero, P., Guzmán, I.P. de: An efficient pre-
processing transformation for functional dependencies sets based on the
substitution paradigm. In: CAEPIA 2003. pp. 136–146. Springer (2003).

7. Cordero, P., Enciso, M., Mora, A., Ojeda-Aciego, M.: Computing minimal
generators from implications: A logic-guided approach. In: CLA 2012. pp.
187–198. CEUR-WS.org (2012).

8. Mora, A., Cordero, P., Enciso, M., Fortes, I., Aguilera, G.: Closure via
functional dependence simplification. International Journal of Computer
Mathematics. 89, 510–526 (2012).

9. Rodríguez Lorenzo, E., Bertet, K., Cordero, P., Enciso, M., Mora, A.: The
direct-optimal basis via reductions. In: CLA 2014. pp. 145–156. CEUR-
WS.org (2014).

10. Rodríguez Lorenzo, E., Adaricheva, K.V., Cordero, P., Enciso, M., Mora,
A.: From an implicational system to its corresponding d-basis. In: CLA
2015. pp. 217–228. CEUR-WS.org (2015).

11. Belohlávek, R., Cordero, P., Enciso, M., Mora, A., Vychodil, V.: Auto-
mated prover for attribute dependencies in data with grades. Interna-
tional Journal of Approximate Reasoning. 70, 51–67 (2016).

fcaR, Spreading FCA 207

