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Abstract. The classical approach on Formal Concept Analysis (FCA)
extracts knowledge from a binary table K = (G, M, I) taking into account
the existing relationships (given by the binary relation I) between objects
G and attributes M . Thus, this classical setting accounts only for pos-
itive information. Particularly, FCA allows to define and compute the
concept lattice B(K) from this positive information. As an extension of
this framework, some works consider not only this positive information,
but also the negative information that is explicit when objects have no
relation to specific attributes (denoted by K). These works, therefore,
use the apposition of positive and negative information to compute the
mixed concept lattice B

#(K). In this paper, we propose to establish the
relationships between extents and intents of concepts in B(K), B(K) and
B

#(K) and how to address an incremental algorithm to compute B
#(K)

merging the knowledge on B(K), B(K) previously obtained with classical
methods.

Keywords: Formal concept analysis · Mixed attributes · Concept
lattice

1 Introduction

In the classical paradigm of formal concept analysis (FCA) [4,5], the fundamen-
tal data model is a structure (called formal context) that represents a binary
relationship between a set of objects and their attributes. From this formal con-
text, we can define formal concepts, which represent sets of objects that share
common attributes. In addition, we can define an ordering relationship between
concepts in the sense of specialisation-generalisation, which endows such a set of
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concepts with the structure of a complete lattice. This paradigm has been used
successfully in problems such as the construction of recommender systems [1,3]
or in the analysis of data from social networks [2,7,9].

According to the classical scheme, FCA is not suitable for handling negative
information (indicating the absence of some property in an object, in contrast to
the presence which is assumed by default to be positive information). But some
practical applications require such information to be explicitly contemplated,
hence the need to study from a formal perspective the mixture of the two types
of information.

Early attempts to handle mixed information in FCA tried to model the prob-
lem by apposing the positive context and its negation [6,10], so that the number
of attributes is doubled and, therefore, the computational treatment of the prob-
lem has a higher complexity. Moreover, as mentioned in [11], real applications
often have sparse data in the positive context and are very dense in the nega-
tive context, or vice versa, which generates a large amount of redundancy in the
expression of information. Some works deal with positive and negative informa-
tion [8,11,13,14] more efficiently, but they do not study the relationship between
the different types of information at the concept lattice level.

In the present proposal, we build on the line of work of [13,14], in which,
instead of relying on the apposition of positive and negative contexts, the con-
cept formation operators, i.e. the Galois connection inducing a closure system,
are redefined to allow for the mixing of information types without the need
to duplicate the context. The treatment of mixed information under a unified
framework improves the expressiveness of the model significantly.

The main aim of the paper is to relate the closed sets of the positive and
negative contexts to those that can be obtained by means of the new derivation
operators, which we denote by ⇑ and ⇓, instead of the traditional ↑ and ↓. To do
so, we will define embedding and projection operators, which represent, in turn,
a Galois connection between the individual lattices and the mixed lattice.

Thanks to these operators, we can demonstrate the isomorphism between the
individual lattices and sub-semilattices of the mixed lattice, and the relationship
between the extents and intents of the different lattice types. In addition, we will
present results that establish the decomposition or representation of a mixed
concept in terms of a pair of suitable positive and negative concepts. Thanks
to these theoretical results, we will be able to propose an algorithm for the
computation of the lattice of mixed concepts from the positive and negative
lattices.

The rest of this work is structured as follows: in Sect. 2, we find the prelimi-
nary notions and definitions that will be used throughout this work. In Sect. 3,
we present the main theoretical results that relate the individual concept lattices
to the mixed lattice, and we provide an incremental algorithm able to compute
this mixed lattice from the individual concept lattices. Finally, in Sect. 4, we
present the conclusions and the proposal of future works in this line.
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2 Preliminary Notions

Formal concept Analysis (FCA) is a useful tool to extract knowledge from a
collection of data stored on a formal context K = (G,M, I), where G is a set of
objects, M is a set of attributes and I represents the relation between them.

In a formal context K = (G,M, I), we can define a Galois connection used
to extract the concepts behind the data. The Galois connection is formed by
the mappings ↑ : 2G → 2M and ↓ : 2M → 2G defined in the following way.
A↑ = {m ∈ M | (g,m) ∈ I for all g ∈ A}, that is, all the attributes shared
by the objects in A and B↓ = {g ∈ G | (g,m) ∈ I for all m ∈ B}, i.e., all
the objects that satisfy all the attributes in B. In [15] it is proved that these
two maps form a Galois connection, therefore their compositions ↑↓ and ↓↑ are
closure operators.

Using these notions we are able to extract knowledge: We say that a pair
(A,B) with A ⊆ G and B ⊆ M is a formal concept if A↑ = B and B↓ = A.
So (A,B) is a formal context if all the objects in A share all the attributes in
B and they do not share any other attributes. In addition, given two formal
concepts (A,B) and (C,D) we can define a order relation between then with
(A,B) ≤ (C,D) if and only if A ⊆ C or, equivalently, if and only if D ⊆ B. It is
well-known that the set with all formal concepts together with the order form a
complete lattice that will be denoted by B(K).

The classical FCA paradigm only consider the information provided by the
incidence relation I, and does not model the negative information contained
therein, that is, the information provided by the pairs (g,m) 
∈ I. In this paper
we want to extend to consider the positive and the negative information. Recently
some authors work with this view like [8,11,13,14]. In [11] we find an approach
that, given a formal context K = (G,M, I), they built a new one (K | K) =
(G,M∪M, I∗) being I∗(g,m) = I(g,m) for all m ∈ M and I∗(g,m) = min(1, 1−
I(g,m)) otherwise. Here, the attributes in M are called positive attributes and
the attributes in M are called negative attributes. This approach duplicates the
number of attributes so the methods loses efficiency.

Here, we follow the working line of [14] which, instead of duplicating the
number of attributes, define a new Galois connection over K, i.e., the formal
context does not change. The new connection is denoted by ⇑ and ⇓ to difference
them from the Galois connection defined before. We define mixed context as any
formal context K provided with the new Galois connection. We define the new
operators ⇑ : 2G → 2M∪M and ⇓ : 2M∪M → 2G as follows:

X⇑ = {m ∈ M | (g,m) ∈ I ∀ g ∈ X} ∪ {m ∈ M | (g,m) 
∈ I ∀ g ∈ X}
Y ⇓ = {g ∈ G | (g,m) ∈ I ∀ m ∈ Y } ∩ {g ∈ G | (g,m) 
∈ I ∀ m ∈ Y }

These two operators form a Galois connection and, as consequence, both
compositions are closure operators. Consequently, using the closure operators we
can build a concept lattice over the mixed context of K. We denote by B

#(K) the
lattice built by using the derivation operators ⇑ and ⇓, and we denote by B(K)
the concept lattice formed by using the classic operators ↑ and ↓. Observe that
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with this new derivation operators we obtain the same concept lattice that the
concept lattice build with the formal context with the double of attributes so we
can process the same information without duplicating the number of columns
and, as consequence, this view is more efficient.

Let A be a set of attributes, now we present some functions that allow us to
capture the positive and negative information related to this set:

Pos(A) = A ∩ M, Neg(A) = A ∩ M

where A = {m ∈ M : m ∈ A} ∪ {m ∈ M : m ∈ A}.
Given a formal context K we define its complement as K = (G,M, I) being

I defined by (g,m) ∈ I if and only if (g,m) /∈ I.

Lemma 1 ([12]). Let K be a formal context. The following statements are ful-
filled:

1. If A ⊆ M , then A⇓ = A↓ (in K).
2. If A ⊆ M , then A⇓ = A↓ (in K).
3. If B ⊆ G, then Pos(B⇑) = B↑ (in K) and Neg(B⇑) = B↑ (in K).

The following example will be used to show the main results in this work.

Example 1. Let K be a formal context given by Table 1(a). The apposition (con-
catenation by columns) of K and its complement K is in Table 1(b). As usual,
we follow the notation K|K for the concatenated formal context. In addition, we
define M = {a,b, c,d} and M = {a,b, c,d}.

Table 1. Formal contexts for the example.

a b c d

o1 × ×
o2 × ×
o3 × ×
o4 ×
o5 × × ×
o6 × ×
o7 × ×

a b c d a b c d

o1 × × × ×
o2 × × × ×
o3 × × × ×
o4 × × × ×
o5 × × × ×
o6 × × × ×
o7 × × × ×

(a) (b)

The following example shows the difference between the two Galois connec-
tion defined over K, that is, between (↑, ↓) and (⇑, ⇓).

{c, d}↓↑ =
({c, d}↓)↑

= {o5}↑ = {b, c, d}
{c, d}⇓⇑ =

({c, d}⇓)⇑
= {o5}⇑ = {b, c, d, a}

Furthermore, we can check the results of Lemma 1, since {c, d}⇓ = {c, d}↓ =
{o5} and Pos({o5}⇑) = Pos({b, c, d, a}) = {b, c, d} = {o5}↑.

Finally, we can see that ↓ is defined on 2M whereas ⇓ is in 2M∪M so it does
not make sense to write {c, b}↓. Instead, we have to rely on ⇓ to compute the
desired extent using mixed attributes: {c, b}⇓ = {o4, o6}.



Computing the Mixed Concept Lattice 91

3 Main Results

Hereinafter, we will consider a formal context K = (G,M, I) and its negative
context K, both equipped with their corresponding concept-forming operators
(↓,↑), and the mixed context equipped with (⇓,⇑). The main objective of this
work is to characterise the elements of the mixed lattice B

#(K) in terms of
those of the positive and negative lattices.

We divide this study into two strategies. The first part of this section will
be devoted to studying how the individual positive and negative lattices can be
mapped into the mixed lattice, analysing their inclusion and the isomorphism
relationship between these lattices and sub-semilattices of the B

#(K). The sec-
ond part will focus on analysing how to decompose the concepts of the mixed
lattice in terms of concrete concepts of the individual lattices, allowing the defi-
nition of the algorithm for the computation of the mixed lattice from the latter.

3.1 Embedding of B(K) and B(K) into B
#(K)

Here, as mentioned above, we present theoretical results that allow us to study
the inclusion relation of the positive and negative lattices within the B

#(K). We
will start by studying how the extents of the mixed lattice have a higher level of
granularity than the extents of the individual lattices. We will use the following
notation in order to make the results of this work easier to read:

Notation 1. Let us denote:

Ext(K) := {A ⊆ G : A is the extent of a concept in B(K)}
Int(K) := {B ⊆ M : A is the intent of a concept in B(K)}
Ext#(K) := {A ⊆ G : A is the extent of a concept in B

#(K)}
Int#(K) := {B ⊆ M ∪ M : A is the intent of a concept in B

#(K)}
With this notation, we refer to the set of extents and intents of concepts in

B(K) and B
#(K), respectively. Analogously, we can denote the corresponding

ones in the negative lattice K.

Lemma 2. For a given formal context K = (G,M, I), we have Ext(K) ⊆
Ext#(K) and Ext(K) ⊆ Ext#(K).

We continue the example above to give a graphical representation of the
situation stated in the previous theoretical result.

Example 2. We continue with the same contexts of Example 1. In Fig. 1, we show
the concept lattices B(K), B(K) and B

#(K) of the positive, negative and mixed
formal contexts. We have used a colour code to represent the relationships of
Ext(K) and Ext(K) with Ext#(K). We have marked in blue the concepts whose
extents are present in B(K), and in orange those present in B(K). Note that
some concepts are in grey since their extent appears in both B(K) and B(K). We
can observe that the concepts in the mixed context contain those of the other
two contexts and provide additional information and granularity.
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Fig. 1. Concept lattices associated with (a) the positive context K in Table 1(a); (b)
the mixed context; (c) the negative formal context K.

The Lemma 2 allows us to define the following operators:

e+ : B(K) → B
#(K) e− : B(K) → B

#(K)
(A,B) �→ e+(A,B) := (A,A⇑) (A,B) �→ e−(A,B) := (A,A⇑)

Note that these mappings are well-defined since, by Lemma 2, every extent
of B(K) and B(K) is also an extent of B

#(K). We can say that these operators
define embeddings of B(K) and of B(K) into B

#(K). We shall now study their
properties:

Theorem 1. For a formal context K = (G,M, I), the embedding mappings e+
and e− are ∧-preserving and injective.

Let us now recall the projection operators π+ : B
#(K) → B(K) and π− :

B
#(K) → B(K) introduced in [12] and defined as

π+(A,B) := (Pos(B)⇓, Pos(B)) π−(A,B) := (Neg(B)
⇓
, Neg(B))

For these mappings, we have the following result:

Theorem 2 ([12]). The maps π+ : B
#(K) → B(K) and π− : B

#(K) → B(K) are
∨-preserving and surjective.

We can go even further in the study of their properties. According to the
following theoretical result, these embedding and projection operators establish
Galois connections between the individual lattices (B(K) and B(K)) and the
mixed lattice.

Theorem 3. For a formal context K = (G,M, I), we have:

1. e+, e−, π+ and π− are monotone.
2. π+ ◦ e+ = idB(K) and π− ◦ e− = id

B(K).
3. (e+, π+) and (e−, π−) are isotone Galois connections.
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In our case, (e+, π+) and (e−, π−) are not only Galois connections: by Theorem
3, π+ ◦ e+ and π− ◦ e− are the identity mappings in B(K) and B(K), respectively,
and this condition allows us to say that they are Galois injections (also called
Galois surjections). Let us introduce the following notation:

Notation 2. Consider a formal context K = (G,M, I) and the operators e+, e−,
π+ and π− defined as above. Then, we denote σ+ := e+◦π+ and σ− := e−◦π−, where
both maps are B

#(K) → B
#(K).

As a consequence of Theorem 3, we have:

Corollary 1. σ+ and σ− are closure operators in B
#(K).

We now finish the study of the embeddings of the individual lattices within
the mixed lattice by showing that the system of closures induced by the above
closure operators coincides with the embeddings of the individual lattices within
B
#(K). Let us denote C+ and C− the set of closed sets according to operators σ+

and σ−, respectively. Then, we have:

Proposition 1. The closed sets of σ+ and σ− are the embeddings of B(K) and
B(K) into B

#(K), respectively. That is

C+ = e+(B(K)) and C− = e−(B(K))

Example 3. We continue with the formal context presented in Example 1. Here,
we present in Table 2 the embeddings of the lattices of K and K. In the table,
we only list the intents of the corresponding concepts for the sake of clarity.

Table 2. Embedding of the individual concept lattices B(K) and B(K) into B
#(K).

Only intents are shown in this table.

(A, B) ∈ B(K) e+(A, B) (A, B) ∈ B(K) e−(A, B)

∅ ∅ ∅ ∅

{d} {d} {
d
} {

d
}

{c} {c} {c} {c}
{b} {b} {

c, d
} {

a, b, c, d
}

{b, d} {b, d, a} {
b
} {

b
}

{b, c} {b, c, a} {
b, d

} {
c, b, d

}

{b, c, d} {b, c, d, a} {
b, c

} {
a, d, b, c

}

{a} {a} {a} {a}
{a, d} {

a, d, b, c
} {

a, d
} {

c, a, d
}

{a, c} {
a, c, b, d

} {a, c} {b, d, a, c}
{a, b} {

a, b, c, d
} {

a, b, d
} {

c, a, b, d
}

{a, b, c, d} {
a, b, c, d, a, b, c, d

} {
a, b, c, d

} {
a, b, c, d, a, b, c, d

}
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Finally, we state a result that is direct consequence of Corollary 1 and Propo-
sition 1.

Corollary 2. B(K) and B(K) are isomorphic to ∧-subsemilattices of B
#(K).

3.2 Decomposition of Concepts in B
#(K)

In this part, we approach the problem of the decomposition or representation of
mixed concepts in terms of concepts from the positive and negative lattices. The
first result uses the closure operators σ+ and σ− to decompose mixed concepts.

Theorem 4. Let K = (G,M, I) be a formal context and let (A,B) ∈ B
#(K).

Then (A,B) = σ+(A,B) ∧ σ−(A,B).

Example 4. We continue with the formal context in Example 2. The mixed con-
text presents an aggregate of 30 concepts. In Table 3, we show some of the con-
cepts in B

#(K) together with their decomposition. To avoid massive listings, we
have selected those concepts in which decomposition appear non-purely positive
or negative sets σ+(A,B) and σ−(A,B), that is, such that Neg(σ+(A,B)) 
= ∅ or
Pos(σ−(A,B)) 
= ∅.

Table 3. Decomposition of some of the concepts in B
#(K) of Example 1.

(A, B) ∈ B
#(K) σ+(A, B) σ−(A, B)

{
c, b, d

} {c} {
c, b, d

}
{
c, a, d

} {c} {
c, a, d

}
{
c, a, b, d

} {c} {
c, a, b, d

}

{b, d, a} {b, d, a} {a}
{b, d, a, c} {b, d, a} {b, d, a, c}
{b, c, a} {b, c, a} {a}
{
b, c, a, d

} {b, c, a} {
c, a, d

}

{b, c, d, a} {b, c, d, a} {a}
{
a, d, b, c

} {
a, d, b, c

} {
a, d, b, c

}
{
a, c, b, d

} {
a, c, b, d

} {
c, b, d

}
{
a, b, c, d

} {
a, b, c, d

} {
a, b, c, d

}
{
a, b, c, d, a, b, c, d

} {
a, b, c, d, a, b, c, d

} {
a, b, c, d, a, b, c, d

}

As a consequence of this theorem, and of the theoretical results of the previous
section, we have the following decomposition result. This will help us provide an
algorithm to compute B

#(K) from B(K) and B(K).

Theorem 5. Let K = (G,M, I) be a formal context and let (A,B) ∈ B
#(K).

Then (A+ , B+) = π+(A,B) ∈ B(K) and (A− , B−) = π−(A,B) ∈ B(K) verify that
(A,B) = (A+ ∩ A− , B+ ∪ B−).
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Furthermore, we can say:

Theorem 6. Let K = (G,M, I) be a formal context. The mappings:

φ : Ext(K) × Ext(K) → Ext#(K) ψ : Int(K) × Int(K) → Int#(K)
(A1, A2) �→ A1 ∩ A2 (B1, B2) �→ (B1 ∪ B2)⇓⇑

are well defined and surjective.

The meaning of the last two theorems is that we can compute all intents
of B

#(K) by traversing the intents of B(K) and B(K), taking their union, and
computing the closure. In fact, we can say that:

Corollary 3. Let K = (G,M, I) be a formal context. Then

Int#(K) =
{
B = B1 ∪ B2, B1 ∈ Int(K), B2 ∈ Int(K), and B = B⇓⇑}

Now, for the sake of readability, let us introduce the notation for the following
mappings:

Notation 3. Let Δ
−
+

:= π−◦ e+ : B(K) → B(K) and Δ
+

− := π+◦ e− : B(K) → B(K).

Lemma 3. Consider a formal context K = (G,M, I):

1. If (A,B) ∈ B(K) and we call (C,D) = Δ
−
+
(A,B) = π−(A,A⇑) ∈ B(K), then,

(A,B ∪ D) = e+(A,B) ∈ B
#(K).

2. If (A,B) ∈ B(K) and we call (C,D) = Δ
+

−(A,B) = π+(A,A⇑) ∈ B(K), then,
(A,B ∪ D) = e−(A,B) ∈ B

#(K).

Thus, Δ
−
+

and Δ
+

− can be used to find concepts in the other simple lattice that
complete (by union) a concept in B

#(K). In addition, e+(A,B) = (A,B ∪ D) is
the greatest concept (in the sense of the order ≤ in B

#(K)) such that its intent
contains B: e+(A,B) = sup{(R,S) ∈ B

#(K) : B ⊆ S}, and analogously in B(K).
This can be checked in Table 2, where we can see that the embeddings produce
the intents in B

#(K) with the minimum cardinality containing B.

3.3 An Algorithm for Computing the Mixed Lattice

In this, section, we present an algorithm to compute the mixed concept lattice
B
#(K) from the individual positive and negative lattices. It is based in the

previous theoretical results about the decomposition of the intents of the mixed
lattice. Furthermore, we will make use of other technical results to improve the
performance of the algorithm:

Lemma 4 ([14]). Let K = (G,M, I) be a formal context, and consider the asso-
ciated mixed context. Then, the top concept of B

#(K) is (G,G⇑) and its bottom
concept is (∅,MM).
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For the second result, we need to define the notion of consistent set.

Definition 1. A set A is said to be consistent if A ∩ A = ∅ or, equivalently,
if Pos(A) ∩ Neg(A) = ∅, that is, if it does not contain a given attribute and its
negation.

Lemma 5 ([13]). Let K = (G,M, I) be a formal context, and consider the asso-
ciated mixed lattice B

#(K). The intent of all the concepts but (∅,MM) are
consistent sets.

These results allow us to propose the Algorithm 1. This algorithm iterates
through all the concepts in the positive lattice B(K), and for each concept (A,B)
it computes the concept (C,D) given by Lemma 3, so that (A,B ∪ D) is indeed
a mixed concept and is added to the result L (lines 3 – 4). Then, a queue Q is
built consisting of all proper subconcepts of (C,D), excluding the bottom of B(K)
(line 5). This way, we avoid duplicating concepts in the enumeration. After this,
the algorithm picks one element (C1,D1) of the queue in each iteration, builds
the following candidate intent B∗ and its corresponding intent X = A ∩ C1

(lines 7 – 8). If X = ∅, this means that B∗ (and its closure B⇓⇑
∗ = X⇑) is

not consistent, therefore they cannot be the intents of any concept in the mixed
lattice, according to Lemma 5. In this case, all the subconcepts of (C1,D1) will
verify this same condition, hence they are removed from the queue Q (lines 9 –
11). The last comprobation (lines 12 – 13) adds (X,B∗) to L only if B∗ is closed
in the mixed context. Finally, the algorithm returns L ∪ {∅,MM}, since this
latter is the only known (Lemma 4) concept not included in the previous steps
(line 14).

Algorithm 1: Compute Mixed Concepts
Input: B(K): The lattice associated to K. B(K): The lattice associated to K.
Output: B

#(K)
1 L := ∅

2 for (A, B) ∈ B(K) do

3 (C, D) := Δ
−
+(A, B) = π−(A, A⇑)

4 L ← L ∪ {(A, B ∪ D)}
5 Q := {(C1, D1) ∈ B(K) : ⊥ < (C1, D1) < (C, D)}
6 for (C1, D1) ∈ Q do
7 B∗ := B ∪ D1

8 X := B⇓
∗ = A ∩ C1

9 if |X| = 0 then
10 Remove from Q all subconcepts of (C1, D1)
11 Go to line #6

12 if B∗ = X⇑ then
13 L ← L ∪ {(X, B∗)}

14 return B
#(K) = L ∪ {(∅, MM)}
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Next, we sketch a single step of Algorithm 1, starting in a specific concept
(A,B) ∈ B(K), to show the procedure in more detail.

1. For (A,B) = ({o1, o2, o5, o7}, {b}), we compute D = ∅ using the operator
Δ

−
+
. Then (A,B ∪ D) = (A,B) is added to L.

2. The queue is Q = {{d
}

, {c} ,
{
c, d

}
,
{
b
}

,
{
b, d

}
,
{
b, c

}
, {a} ,

{
a, d

}
,

{a, c}, {a, b, d}}.
3. We loop over the items in Q:

(a) For D1 =
{
d
}
, we have B∗ =

{
b, d

}
and X = {o2, o7}. Since X⇑ = B∗,

(X,B∗) is added to L.
(b) For D1 = {c}, it is B∗ = {b, c} and X = {o1, o2}. As before, (X,B) is

added to L.
(c) For D1 =

{
c, d

}
, we have B∗ =

{
b, c, d

}
and X = {o2}. This pair is

rejected since B∗ is not closed: X⇑ =
{
a, b, c, d

} 
= B∗.
(d) For D1 =

{
b
}
, we can compute B∗ =

{
b, b

}
and then X = ∅. This

means B∗ is not consistent, so the algorithm removes {{b}, {b, d}, {b, c},{
a, b, d

}} from Q.
(e) For D1 = {a}, we have B∗ = {b, a} and X = {o1, o5, o7}. B∗ is closed

so we add (X,B∗) to L.
(f) For D1 =

{
a, d

}
, it is B∗ =

{
b, a, d

}
and X = {o7}, but B∗ is not

closed: X⇑ =
{
b, c, a, d

} 
= B∗, so (X,B∗) is rejected.
(g) For D1 = {a, c}, we have B∗ = {b, a, c} and X = {o1}. As before, B∗ is

not closed so (X,B∗) is rejected.

Note that, if B(K) and Q are traversed in lectic order, then B
#(K) is also

built in lectic order.

4 Conclusions and Future Work

The classical FCA paradigm studies the presence of an attribute for an object
and does not consider the absence of the attribute as information explicitly. In
this paper, we adopt the line of modelling both positive and negative informa-
tion, and present a line of work on the relationship between the concept lattices
of formal contexts consisting of only positive or negative information, and the
concept lattice when the mixture of both types of information is considered.

This line of work has as its starting point a series of theoretical results pre-
sented in this article. These results tell us how the individual lattices map onto
the mixed lattice, thanks to some embedding and projection operators that,
jointly, form Galois connections between the B(K) and B(K) and the mixed lat-
tice B

#(K). Furthermore, we establish decomposition or representation results
of the mixed concepts according to the closure operators induced by these Galois
connections.

These decomposition results have allowed us to present a proposal of an
algorithm for the computation of the concepts of the mixed lattice from the
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concepts of the individual lattices. Note that this algorithm requires to have
precomputed B(K) and B(K). But they can be computed in parallel.

As future work we aim to optimise this algorithm and exploit its divide
and conquer strategy to build pyramid-like algorithms for the computation of
massive concept lattices. Furthermore, the application of logic inference systems
for mixed attributes may propose new strategies in this sense. In addition, we
plan to apply all this results to the study of the minimal generators of the mixed
lattice and of the implication bases of mixed contexts.
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