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Abstract. This paper explores the effect of using different pipelines
to compute connectomes (matrices representing brain connections) and
use them to train machine learning models with the goal of diagnosing
Autism Spectrum Disorder. Five different pipelines are used to train six
different ML models, splitting the data into female, male and all subsets
so we can also research the effect of considering male and female patients
separately. Our results conclude that pipeline and model choice impact
results, along with using general or specific models.
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1 Introduction

Autism Spectrum Disorder (ASD) affects the emotional, social, and communica-
tion abilities of the patient. Its prevalence among young children is 1–2% [10], but
getting the diagnosis is not always easy, and it can require a long process. This is
partly due to autism being a spectrum, meaning its characteristics vary between
patients and genders. But also because it has been traditionally considered a
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male disease, causing many female patients to be undiagnosed, misdiagnosed, or
lately diagnosed [9], which considerably affects their daily lives.

Recently, attention on early diagnosis of ASD through the use of machine
learning techniques [3] is increasing. Studies have shown that neurotypical and
non-neurotypical brains are wired differently [8], making work on computational
modelling of connective differences that can aid in diagnosis important [7].

The study of brain connectivity is based on the construction of the connec-
tome [13], a formal representation of the set of brain connections in the form of a
weighted graph and its associated adjacency matrix. The graph’s nodes generally
represent macroscopic regions of the brain, and the weight of its edges indicate
the strength of the connection between these regions. This model allows for its
management and the application of advanced mathematical and computational
techniques. The connectome can be constructed from both anatomical and func-
tional magnetic resonance imaging (fMRI), the latter indicating not the physical
connection between brain regions but the intensity of the coactivations between
brain regions, i.e., their correlation.

In practice, there are several methods [2,4] to calculate the connectome from
an MRI acquisition. This is a problem because (a) there is no standard method
for calculation, and (b) the sensitivity of study results to the calculation method
used has not been studied. This last point is of great importance, as the possi-
ble variability of the results of early diagnostic studies according to the use of
different calculation methods is unknown.

This paper aims to analyze the effect of the selection of a particular calcu-
lation method on the early diagnosis of ASD using different machine learning
methods. In this way, it will be possible to determine whether there is a strong
dependence of the results on the pipeline of the connectome construction and to
discuss how machine learning methods can achieve results comparable to those
known in the literature.

The rest of this work is divided into three further sections. We begin by
describing the dataset, pipelines, machine learning algorithms and methodology
used to create the models. Their results are presented and discussed during the
third section, followed by the conclusions.

2 Methodology

The same data has been used on all pipelines to correctly compare their effect on
the connectomes produced. While the preprocessed data can be easily obtained
for four of the pipelines, the fifth one needs to be executed on the original fMRIs.

Once we have computed the connectomes, all five data sets follow the same
process. Firstly, each of them is divided into female, male, and all data sets,
which will help us determine the importance of considering each sex separately.
For each of these sets (15 in total), we trained six different machine learning
(ML) classification models using Cross-Validation and Random Search. A general
scheme of the methodology used can be found in Fig. 1.
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Fig. 1. Scheme of the analysis methodology applied on this study.

2.1 Dataset

The connectomes are computed from the files included in the first edition of the
ABIDE project [6], which compiles fMRIs from different entities, totalling 1110
images from both ASD and control patients. The second edition’s data has not
been used because it is not included on the ABIDE Preprocessed Project [4],
which provides time series of four pipelines with several configurations.

– 538 Patients with autism: 65 female and 473 male.
– 572 Patients with autism: 99 female and 473 male.

2.2 Functional Preprocessing Pipelines

A pipeline is a series of steps that, from a raw functional image sequence of a sub-
ject, build their correlation matrix (connectome). This work compares five fMRI
processing pipelines designed to obtain the connectome. Usually, these pipelines
are built from algorithms and functions of standard Neuroimaging processing
packages, such as FSL, SPM, ANTs, or FreeSurfer.

The typical steps followed are: S1) basic image pre-processing, correcting
artifacts at the beginning or end of the fMRI acquisition, as well as those due to
patient motion, slice timing, usually accompanied by a reorientation in a stan-
dard coordinate system as well as normalization of the greyscale; S2) removal of
signals confusing to process, such as white matter signal, or motion due to the
heartbeat and respiration; S3) signal filtering, using, for example, a bandpass fil-
ter; S4) transformation (registration) of the image into the standard MNI152 [11]
template and labeling to determine a brain parcellation, i.e., the identification
of its anatomical regions; S5) calculation of the time series of the average sig-
nal (activations) in each anatomical region; S6) construction of the correlation
matrix (connectome) between all the time series found in the previous step.

Different pipelines vary on the algorithms used and their parameters. Some
add an extra step, usually to eliminate the impact of artifacts in the image.

The first of the pipelines is Duke’s Python/FSL Resting State pipeline [2]. It
incorporates a non-brain tissue removal stage in step S1), removes the possible
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effect of the white matter and cerebrospinal fluid signal in S2), uses a band-
pass filter from 0.001 to 0.08 Hz in S3), and, in step S4), uses the Automatic
Anatomical Labelling [14] standard for Regions of Interest (ROIs) from Montreal
Neurological Institute (aal MNI) to extract the time series and then the correla-
tion matrices within 116 ROIs. The other pipelines considered in this study are
described in the ABIDE website [6] and follow closely the four steps mentioned
above, with subtle differences.

The Connectome Computation System (CCS) [15] differs with Duke’s
pipeline (DUKE) on the software packages used. The Configurable Pipeline
for the Analysis of Connectomes (CPAC) [5] removes the effect of the white
and grey matter signals, step S2), using principal component analysis instead
of linear regression. The Data Processing Assistant for Resting-State fMRI
(DPARSF) [16] does not normalize the intensity of the image on step S1). The
Neuroimaging Analysis Kit (NIAK) [1] does not correct the timing of each slice,
possibly inducing incorrect measurements. On step S2), NIAK removes low-
frequency drifts using a discrete cosine basis with a 0.01Hz high-pass cut-off,
whereas the rest of the pipelines apply polynomial regression of the signal.

In the ABIDE platform, the results of the latter four pipelines are pre-
computed and downloadable according to several preset settings. In our work,
we have collected the data from the platform setting the parameters as close as
possible to the ones used in Duke’s pipeline since its results are not available
online and were computed in-house. The main configurations set are: regarding
bandpass filtering, the range is 0.01–0.1Hz; signal regression is performed using
the image’s global average on every slice, contrary to the mean white matter
and spinal fluid signals, more sophisticated; and while Duke’s pipeline uses the
aal MNI atlas for ROIs, they use the aal atlas, with the same labels for ROIs,
but a different template and a slightly different coordinate system.

For all pipelines, the resulting time series is used to compute the normalized
connectomes, as the normalized correlation matrices between them.

2.3 Machine Learning Methods

The six supervised machine learning classifiers used are K-nearest neighbors,
Decision Trees, Random Forest, Support Vector Machines, Multilayer Percep-
tron, and LightGBM, using the algorithms available on scikit-learn’s Python
package [12]. Training has been performed separately for each pipeline and
dataset (female, male, and both), and 5-fold cross-validation combined with
Random Search for each chunk has been used to ensure the models’ validity.
The search grid for each model has been adjusted individually for each pipeline
and dataset to aim at the best possible results.

– K-Nearest-neighbors (KNN) is one of the most basic classifiers since it
simply stores training data and their class and then compares new data to
its k nearest neighbors. The class with the most neighbors is assigned.

– Decision Trees (DT) creates models based on rules with higher complexity
as the tree’s depth increases. These rules are created by dividing training data
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into two iteratively, basing divisions on differences between each subset and
applying them when certain information gain is achieved.

– Random Forests (RF) is an ensemble method, meaning it combines different
models to obtain better results. It uses a series of Decision Trees’ probabilistic
results to reach a verdict.

– Support Vector Machines (SVM) create a series of hyper-planes to split
training data into its different classes. The best hyperplanes are chosen based
on their distance to the nearest points.

– Multilayer Perceptron (MLP) belongs to the Neural Networks family. It
contains an input and an output layer, with at least one hidden layer in
between containing the main weights of the model.

– LightGBM (LGBM) uses decision tree-based algorithms seeking better
accuracy with higher speed and efficiency while using less memory and there-
fore handling large-scale data. It achieves this with histogram-based algo-
rithms and best-first growing criteria.

3 Experimental Results

This section presents the experimental results obtained using the six MLmethods
specified above. The five pipelines analyzed in this paper were compared for each
method and each subset of the data (male, female, and all data).

For this purpose, the mean accuracy, sensitivity (True Positive Rate, TPR),
and specificity (True Negative Rate, TNR) were computed for train and test
data using 5-fold CV combined with random search:

Acc =
TP + TN

TP + FP + FN + TN
(1)

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
(2)

where TP , TN , FP and FN are the true positives, true negatives, false positives,
and false negatives, respectively.

First, the results for female data are presented in Figs. 2, 3, and Table 1. KNN
and DT models produced the worst trainings, except for the DUKE pipeline
using KNN. However, it is probably due to overfitting since the test accuracy is
not remarkable. On the other hand, the best results on the training sets were
obtained using the MLP and LGBM models, reaching almost 100% accuracy.
Now, if we focus on the test sets (Fig. 3), i.e., unseen data, we can have a better
overview of the performance of each method. It is shown that SVM and MLP are
the best options, specifically for CCS, CPAC, and DPARSF pipelines, reaching
accuracies around 70%.

Although CCS and CPAC are the most stable protocols, there is no clear
optimum pipeline, meaning that the type of machine learning method used does
not matter since they provide the best classification metric for female data.
DUKE and NIAK protocols are not recommendable for any method.
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Fig. 2. Mean ACCs for female train data using 5-fold cross-validation.

Fig. 3. Mean ACCs for female test data using 5-fold cross-validation.

Table 1. Average Sensitivity (TPR) and Specificity (TNR) measures for female data
on the test set using 5-fold cross-validation. Best results are in bold.

CCS CPAC DPARSF NIAK DUKE

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

KNN 0.63 0.72 0.61 0.20 0.62 0.53 0.60 0.07 0.62 0.67

DT 0.66 0.55 0.64 0.16 0.65 0.64 0.64 0.27 0.61 0.26

RF 0.63 0.60 0.63 0.68 0.63 0.51 0.63 0.71 0.62 0.57

SVM 0.70 0.73 0.72 0.71 0.66 0.69 0.64 0.70 0.64 0.61

MLP 0.71 0.64 0.70 0.76 0.68 0.67 0.65 0.54 0.64 0.51

LGBM 0.65 0.56 0.65 0.54 0.66 0.62 0.65 0.52 0.60 0.40
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Fig. 4. Mean ACCs for male train data using 5-fold cross-validation.

Fig. 5. Mean ACCs for male test data using 5-fold cross-validation.

Table 1 summarizes the TPRs and TNRs obtained by each model and
pipeline. As in other medical diagnosis tasks, having a low false negative rate is
essential. Thus, a high TNR is an objective. The best measures were achieved
using the CPAC pipeline, reaching 72% TPR and 76% TNR for SVM and MLP
models, respectively. Specifically, MLP seems to be the most accurate for both
measures. CCS pipeline also gives good rates using the SVM model. The rest of
the pipelines remain behind, being the KNN model the worst classifier.

Moving on to results for male data (shown in Figs. 4, 5, and Table 2), the
overall best training results were obtained once again with MLP and LGBM,
while DT gave the worst ones by far. Looking at the test sets, accuracies do
not vary too much between models, excepting DT, which has the lowest overall
scores. The used pipeline has influence, with CCS and CPAC giving the best
results (up to 65% accuracy) and DUKE the worst.

The sensitivities and specificities have decreased a bit concerning female
data, reaching a maximum of 65% TPR and 66% TNR. Nevertheless, the larger
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Table 2. Average Sensitivity (TPR) and Specificity (TNR) measures for male data on
the test set using 5-fold cross-validation. Best results are in bold.

CCS CPAC DPARSF NIAK DUKE

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

KNN 0.63 0.63 0.60 0.63 0.62 0.64 0.52 0.52 0.53 0.54

DT 0.59 0.59 0.58 0.57 0.57 0.56 0.53 0.55 0.50 0.42

RF 0.64 0.62 0.64 0.63 0.59 0.54 0.59 0.57 0.53 0.54

SVM 0.64 0.64 0.64 0.64 0.63 0.64 0.60 0.62 0.56 0.57

MLP 0.64 0.64 0.64 0.65 0.63 0.64 0.58 0.61 0.57 0.57

LGBM 0.65 0.65 0.64 0.66 0.62 0.63 0.58 0.59 0.54 0.55

Fig. 6. Mean ACCs for all train data using 5-fold cross-validation.

amount of data (around five times more than female) has provoked a better
classification for KNN and DT, giving now reasonable results. Still, CCS and
CPAC provide the best rates while DUKE almost does not overcome the 50%.

Results for the subset containing all data are found in 6, 7, and Table 3.
Training accuracies show better results for MLP and LGBM and worse ones for
DT, once more. MLP offers the best results, reaching 70% accuracy on CPAC
preprocessing for the test set. SVM is also close to that score. CCS is again the
second-best pipeline, and NIAK and DUKE have inferior performance.

Table 3 shows that CCS pipeline are highly competitive, having the best TNR
(68%). This is a more reliable value since we have a big and diverse dataset. MLP
and SVM are again the best classifiers, depicting similar sensitivity and speci-
ficity (67%). It is also remarkable that a simpler model such as KNN performs
better or at least has the same TNR. Clearly, DUKE is the worst pipeline.
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Fig. 7. Mean ACCs for all test data using 5-fold cross-validation.

Table 3. Average Sensitivity (TPR) and Specificity (TNR) measures for all data on
the test set using 5-fold cross-validation. Best results are in bold.

CCS CPAC DPARSF NIAK DUKE

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

KNN 0.62 0.68 0.58 0.67 0.60 0.67 0.55 0.55 0.57 0.53

DT 0.57 0.57 0.58 0.57 0.58 0.56 0.56 0.43 0.55 0.57

RF 0.61 0.64 0.64 0.66 0.61 0.65 0.58 0.61 0.57 0.55

SVM 0.66 0.68 0.67 0.66 0.67 0.66 0.63 0.63 0.57 0.57

MLP 0.67 0.68 0.67 0.66 0.65 0.63 0.60 0.60 0.58 0.56

LGBM 0.65 0.65 0.64 0.64 0.64 0.62 0.60 0.60 0.59 0.57

4 Conclusions

After analyzing our results, we can extract a series of conclusions. Generally,
their accuracies are not great, since the maximum values achieved are 70% for
female and all data and 65% for male data. The best TPRs and TNRs are also
close to these values, the best combination being 70% TPR and 76% TNR for
the MLP model using female CPAC-processed data. It seems like female-oriented
models are more specific and sensitive than general models, but when it comes
to male patients, using male-specific models worsens the results.

Regarding pipeline choice, it does impact results, with CCS and CPAC
pipelines being the most reliable ones, constantly providing results among the
best. NIAK and DUKE are the opposite, usually resulting on lower values. The
one subset where results are more balanced between pipelines is the female one,
with less harsh differences. Model choice also impacts the outcome. SVM and
MLP models repeatedly stand out as the ones with better results, with the addi-
tion of LGBM on male data and KNN on all data. DT, on the other hand, is
consistently the worst one.
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Future works could explore how results vary using different configurations on
the pipelines, or changing the atlas used to extract ROIs. Other machine learning
methods could also be researched and the application of these same methods on
connectomes to diagnose other disorders such as schizophrenia or depression.
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