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Abstract Detection of isomorphism among kinematic chains is essential in mechanical
design, but difficult and computationally expensive. It has been shown that both traditional
methods and previously presented neural networks still have a lot to be desired in aspects
such as simplifying procedure of identification and adapting automatic computation. There-
fore, a new algorithm based on a competitive Hopfield network is developed for automatic
computation in the kinematic chain isomorphism problem. The neural approach provides
directly interpretable solutions and does not demand tuning of parameters. We have tested
the algorithm by solving problems reported in the recent mechanical literature. Simulation
results show the effectiveness of the network that rapidly identifies isomorphic kinematic
chains.
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1 Introduction

Synthesis is a procedure by which a product (a mechanism for example) is developed to meet
the desired needs. From the view point of mechanical design, synthesis of kinematic chains
is very important for the invention and innovation of mechanisms. A kinematic chain desig-
nates several links movably connected together by joints called kinematic pairs to transmit
motion. A link is defined as a machine part or a component of a mechanism, assumed to be
rigid.

Synthesis of kinematic chains usually involves the generation of a complete list of kine-
matic chains followed by a time-consuming procedure for the elimination of isomorphs.
Undetected isomorphic chains result in duplicate solutions an unnecessary effort. Falsely
identified isomorphism eliminates possible candidates for new mechanisms. Therefore, detec-
tion of isomorphism among kinematic chains is essential at the conceptual stage of mechanical
design. Yet isomorphism detection is not easy and is computationally expensive.

To date, a lot of work for detection of isomorphic chains has been reported. However,
Tischler et al. [1] concluded that, in the general case, the traditional methods for detecting
kinematic chain isomorphism have not been found to be an efficient solution of this problem.
Most of these algorithms proved to be too convoluted and cumbersome to use in practice
and cannot work for the chains with the number of links greater than 12 [2]. Therefore, as
it has been recently pointed out [3], most published algorithms still have a lot to be desired
in different aspects, such as simplifying procedure of identification and adapting automatic
computation.

In characteristic and other polynomial methods the kinematic chain is represented by a
graph and the approaches are based on the adjacency matrix of the graph [4]. These are com-
puterized methods, usually less convoluted and can work for the chains with the number of
links greater than 12. Unfortunately, the reliability of these algorithms to solve the kinematic
chain isomorphism problem was in question, as several counter-examples were found [4,5].
Therefore, novel methods have been recently presented that posses the advantages of using
standard matrix theory and adapting automatic computation [3,6,7]. All these algorithms to
identify isomorphic chains are based on a combination of eigenvalues and eigenvectors of
the adjacency matrix of the graph.

An alternative direction for kinematic chain isomorphism detection based on the analog
Hopfield model was also investigated by Kong et al. [8]. Although this approach can the-
oretically work for any number of links, the authors point out [9] that they have observed
potential structures of chains which can make this approach fail. Wilson and Pawley [10]
highlighted some of the problems on the use of the analog Hopfield model. One of them is
the need to tune the parameters in the energy function. Besides, due to its continuous change
in the state variable it has been shown that its convergence is slow [11].

The graph isomorphism problem is an NP-complete problem according to the computa-
tional complexity theory. Recently presented novel neural approaches based on the discrete
Hopfield model have been shown to provide powerful algorithms for some NP-complete
problems [12–14]. These networks provide fast and accurate solutions without the fine-tuning
of parameters required in analog Hopfield models like the one proposed by Kong et al. [8].
Moreover, it has been shown that discrete neurons are more efficient than continuous neurons
in terms of computation time and quality of the obtained solutions [14,15]. Therefore, in this
paper we propose a discrete competitive Hopfield approach to identify the isomorphism of
the mechanism kinematic chain. It is shown that this neural network provides fast solu-
tions for the design examples found in the recent literature using other techniques [3,6–8].

123



Improving Neural Networks for Mechanism Kinematic Chain Isomorphism 135

10

5

8

9
2

1

6

3
7

4

9

5

4

8

10

1

2

6

3
7

(a) (b)

Fig. 1 A pair of 10-links isomorphic kinematic chains

Besides, the algorithm provides directly interpretable solutions and does not demand tuning
of parameters.

2 Formulation of the Mechanism Kinematic Chain Isomorphism Problem

A mechanism kinematic chain is an assembly of links and kinematic pairs or joints. Two
kinematic chains are said to be isomorphic if there is a one-to-one correspondence between
the links of one chain and those of the second chain such that two links of a chain are jointed
by a kinematic pair, if and only if the corresponding links of the other chain are jointed by a
kinematic pair.

Graph theory has been widely adopted for the representation of mechanisms because it
is mathematically rigorous, visually intuitive and easily adaptable to computation. A mech-
anism kinematic chain can be uniquely represented by a graph whose vertices correspond to
the links of the chain and whose edges correspond to the joints of the chain. The adjacency
matrix of a mechanism kinematic chain A = [ai j ] is defined as:

ai j (i �= j) = 1, if links i and j are adjacent
ai j (i �= j) = 0, if links i and j are not adjacent
ai j (i = j) = 0.

Figure 1 shows two isomorphic kinematic chains both with 10 links and Fig. 2 represents the
adjacency matrices for these chains.

If the kinematic chains represented by the adjacency matrices A and B are isomorphic,
then these matrices can become equal by means of interchanging rows and columns of one
of them at the same time. Therefore, as demonstrated in [3,8], if A and B are adjacent matri-
ces of two isomorphic chains then B = V AV −1, where V is an orthogonal permutation
matrix such that V t = V −1. Because this operation matrix V reflects the row and column
exchanges, it has the feature that on each column and row there is only one element for 1 and
all the others for 0. Figure 3 represents two different outputs obtained by applying our binary
neural network to the chains shown in Fig. 1. Since these solutions correspond to orthogonal
permutation matrices V , their existence shows that the kinematic chains are isomorphic.
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(b)(a)

Fig. 2 The adjacency matrices of the two chains shown in Fig. 1. Black and white squares represent 1 and 0
values, respectively

Fig. 3 Two different solutions V obtained by our binary neural network for the isomorphic chains shown in
Fig. 1. Black and white squares indicate 1 and 0 outputs, respectively

3 The Existing Neural Network for the Mechanism Kinematic Chain Isomorphism
Problem

In this section we describe the existing analog Hopfield network for identifying isomorphic
chains since the energy function applied in our discrete model is inspired from the one pro-
posed by Kong et al. [8]. We also indicate the deficiencies of the neural network that can
make this approach fail for some structures of chains as pointed out by the authors [9].

In the analog Hopfield network [8], a solution for the mechanism kinematic chain iso-
morphism problem is described by a neuron matrix V = (vi j )n×n which corresponds to the
orthogonal permutation matrix defined in Sect. 2. Given two chains with adjacency matrices
A = (ai j )n×n and B = (bxy)n×n , the energy function in this model is:

E = A
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A valid neuron output V corresponding to an orthogonal permutation matrix requires that
one and only one neuron per row and column must have the output vi j = 1 and all the other
outputs must be vi j = 0. Then, the first term in (1) is of row constraint and the second term
is of column constraint. The third term ensures the number of mapping between the graphs
of the chains to be n times. The fourth term is the objective function to be optimized and
it reaches a minimum only when the two chains are isomorphic. Observe that in (1) four
positive parameters must be fine-tuned.

The dynamic equation of the network is:

duxi

dt
= −uxi

τ
− A

∑

y �=x

viy − B
∑

j �=i

v j x − C

⎛

⎝
∑
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∑
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|ai j − bxy |v j y

where τ is the characteristic time constant that has to be determined. The numerical form of
the described dynamic equation introduces a new constant �:

un+1
xi = un

xi +
(

�

τ

)
dun

xi

dt

Besides, each neuron applies the continuous sigmoid input–output function whose slope uo

must also be determined. Therefore, it is concluded that the seven parameters A, B, C, D, τ,

uo and � must be tuned in this model. This is a difficult task since some of these values are
very sensitive to network change [8].

Note that at each iteration of the network, a neuron matrix must be built with “zero” and
“one” elements. However, as Kong et al. point out [8], the exact zero and one values are not
possible to reach because continuous neurons are applied. Then, the output neuron matrix V
is sometimes difficult to interpret since only gives approximate values. Hence, it is concluded
this network is not very suitable for automatic computation. Moreover, convergence is slow
with continuous neurons. It has been shown that analog Hopfield networks like this usually
take hours to produce accurate solutions [11]. In contrast, we propose a binary Hopfield
model that converges rapidly and provides directly interpretable solutions without a burden
on the parameter tuning.

4 The Proposed Neural Algorithm for the Mechanism Kinematic Chain Isomorphism
Problem

In this section we apply a competitive Hopfield network [12,13] for identifying isomorphic
chains which implements novel dynamics that are inspired from the discrete Hopfield model.
The proposed network consists of a single layer of N binary interconnected neurons. Let
us consider now that the network is partitioned into n disjoint groups, where each group is
composed of m neurons, such that N = n × m.

If k represents discrete time, the output state of the i th neuron in the x th group is denoted
by vxi (k) ∈ {0, 1}, its input by uxi (k) and its bias by θxi , for x = 1, . . . , n, i = 1, . . . , m.
The interconnection strength between neurons xi and y j is denoted by ωxi,y j , for x, y =
1, . . . , n; i, j = 1, . . . , m, where symmetric weights ωxi,y j = ωy j,xi are considered. The
neural network is characterised by the Hopfield’s energy function
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E(k) = −1
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and the inputs of the neurons are computed by the updating rule

uxi (k) =
n∑

y=1

m∑

j=1

ωxi,y jvy j (k) − θxi (3)

Since the network is partitioned into disjoint groups of neurons we can introduce the notion of
group update. Thus, instead of selecting a single neuron for update as in the standard discrete
Hopfield model, we select a complete group of neurons. We shall say that the network M is
a Competitive Hopfield Model (CHOM) if one and only one neuron per group has 1 as its
output at every time k.

Theorem Let M be a CHOM in which only one group x, for x = 1, . . . , n, is selected
for updating at time k. Let xo be the neuron in group x with the output 1 at time k and xc
the candidate neuron in group x that will have the output 1 at time k + 1. Then, the energy
difference resulting is:

�Ex (k) = E(k + 1) − E(k) = uxo(k) − uxc(k) − 1

2
(ωxo,xo + ωxc,xc − 2ωxc,xo)

Thus, if the dynamics of the CHOM are given by

vxi (k + 1) =
{

1 if uxi (k) − Kxo,xi = max j=1...m{ux j (k) − Kxo,x j }
0 otherwise

(4)

where Kxo,x j = − 1
2 (ωxo,xo + ωx j,x j − 2ωxo,x j ) for j = 1, . . . , m, then convergence of the

energy function to a local/global minimum is guaranteed.

Proof See Appendix. �

As proposed by Kong et al. [8], in the mechanism kinematic chain isomorphism problem
a valid solution can be represented by a neuron state Vn×n in which one and only one neuron
per row and per column must be “on". Then, the n groups for the CHOM can be constructed
such that every group is a row or a column of the network. Since we choose groups of rows,
then the first term (row constraint) can be removed from the energy function (1) proposed
by Kong et al. [8]. Besides, since there are always n activated neurons, the third term in
(1) can also be eliminated. Therefore, given two kinematic chains with adjacency matrices
A = (ai j )n×n and B = (bxy)n×n , if we write the term of column constraint in a more
computationally efficient way, the resulting simplified energy function for our model is:

E = 1
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|ai j − bxy |vi xv j y (5)

In order to obtain the connections weights ωxi,y j and the biases θxi of the neural network, we
will compare the energy function (5) and the Hopfield’s energy function (2). By substituting
these values in the updating rule (3) we have that the input of every neuron is given by:

uix = 1 − vi x −
∑

r �=i

vr x −
∑

j

∑

y

|ai j − bxy |v j y (6)

Note that the weak point for a Hopfield-type network is the local minima problem. In
the model proposed by Kong et al. [8] the following criterion is considered: if the network

123



Improving Neural Networks for Mechanism Kinematic Chain Isomorphism 139

does not yield a stable neuron matrix after 1,000 iterations, this corresponds to two chains
that are not isomorphic. Obviously this criterion does not show that the two chains are not
isomorphic, because if the network is trapped in a local minimum then we cannot detect two
isomorphic chains. A Hopfield-type network can only ensure that, if we reach the energy
value E = 0, then the two kinematic chains are isomorphic.

In this paper we apply a binary neural model with a high convergence speed that allows
to perform very rapid simulations of the network. If we implement complicated dynamics
in order to escape from local minima, the computation time is highly increased. It has been
observed that the fastest identification of isomorphism is obtained by performing runs from
different initial states. Simulation results show that this simple strategy is a very efficient and
reliable approach for mechanism kinematic chain isomorphism identification. The following
procedure describes the proposed neural algorithm based on the CHOM:

1. Set an initial state of the neuron matrix Vn×n by randomly setting the output of one
neuron in each row to be 1 and all the other neurons in the row to be 0.

2. Evaluate the initial value of the energy function E given by Eq. 5.
3. Select a row i of V .
4. Compute the inputs of the neurons in the row i , ui j , by Eq. 6, for j = 1, . . . , n.

5. Select the activated neuron io in the row i and select the neuron ic with the maximum
value of {ui j − Kio,i j } per row i .

6. If max{ui j − Kio,i j } �= uio, then vic = 1, vio = 0 and �E = uio − uic + Kio,ic ;
else �E = 0 since no updating is made.

7. Repeat from step (3) until the number of iterations N I = N Imax or E = 0.
8. Repeat from step (1) until the number of initial states N S = N Smax or E = 0.

On step 3 we select a row randomly or easier, we follow i = 1, . . . , n. On step 5, if there
are different neurons in row i with the maximum value of u, the algorithm must randomly
select one of them. However, for simplicity, it selects the first neuron in the row with the
maximum value of u.

5 Simulation Results

We consider in this section examples presented in the most recent approaches developed
for automatic computation in the kinematic chain isomorphism problem. In comparing our
results, we have found in the literature that in all these reported algorithms there is no
description of computation time. In order to illustrate the effectiveness of the analog Hop-
field network, Kong et al. [8] tested their algorithm for two counter-examples known for other
methods. They solved the pair of 10-links isomorphic kinematic chains shown in Fig. 1 and
the pair of 12-links non-isomorphic chains shown in Fig. 4c.

Chang et al. [6] presented a new method based on eigenvectors and eigenvalues of the
adjacency matrix. In 2005 Cubillo et al. [3] pointed out some fundamental errors in the theory
presented by Chang et al. [6] and developed a new procedure to identify isomorphic chains.
They tested their algorithm for the pair of eight-links isomorphic chains shown in Fig. 4a and
for the pair of eight-links isomorphic chains shown in Fig. 4b. The most complete eigensys-
tem algorithm for chain isomorphism detection was presented by He et al. [7]. They showed
that the adjacency matrix is not sufficient in the eigensystem approach to ensure isomorphism
and developed the adjusted adjacency matrix. They solved the two pairs of non-isomorphic
chains shown in Fig. 4c (12 links) and d (10 links). They also applied their method to the
pair of non-isomorphic graphs with 15 vertices shown in Fig. 5 and to the pair of isomorphic
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(a)

(b)

(c)

(d)

Fig. 4 Different pairs of isomorphic and non-isomorphic kinematic chains

graphs with fourteen vertices shown in Fig. 6. We have tested our neural network solving
successfully all the described examples taken from the recent bibliography.

All experiments were run on a conventional 3 GHz Pentium IV PC with 512 MBytes RAM
by Matlab. For every one of the seven selected test problems, the results were obtained for a
total of 1,000 runs of the neural algorithm described in Sect. 4. Simulation results show that
with only 10 iterations of the proposed discrete neural network we can detect a local mini-
mum in order to select a new random initial state. Thus, it is always considered N Imax = 10
for all experiments. For the maximum number of initial states we consider that if the network
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Fig. 5 Two non-isomorphic graphs with 15 vertices

Fig. 6 Two isomorphic graphs with 14 vertices

Table 1 Simulation results obtained for the isomorphic test problems using the proposed discrete neural
algorithm

Fig. 4a Fig. 4b Fig. 1 Fig. 6

(8 vertices) (8 vertices) (10 vertices) (14 vertices)

Av. No. of initial states 35 12 25 53

Av. computation time (s) 6.9 2.3 11.4 87.1

Max. No. of initial states 139 51 103 286

Max. computation time (s) 27.4 9.8 47.3 470.2

Av., average; No., number; Max., maximum

does not reach the value E = 0 after a number of random initial states N Smax = 1, 000 this
corresponds to two chains that are not isomorphic.

For the pair of 10-links isomorphic chains proposed by Kong et al. [8] shown in Fig. 1, the
value E = 0 is reached after an average number of initial states equal to 25, where an average
time of 11.4 s is needed. Two different outputs of the proposed binary network that directly
provide the required orthogonal permutation matrices are shown in Fig. 3. Note that for an
analog Hopfield model like the one proposed by Kong et al. [8], the average computation
time is of hours, while our discrete neural algorithm only takes seconds to find a solution.

For the test examples shown in Figs. 4c, d and 5 the maximum number of initial states
N Smax = 1, 000 was reached and the condition E = 0 was not satisfied. It indicates that
they are non-isomorphic graphs. For all the considered isomorphic test problems, Table 1
shows the average number of random initial states that the network needs to provide a cor-
rect solution, that is, to reach the value E = 0 and the corresponding computation time
in seconds. The table also presents the most unfavourable circumstance, that is, the maxi-
mum number of random initial states that the network needs to reach the value E = 0 and
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the corresponding computation time in seconds. These simulation results obtained for the
isomorphic test problems show that this a fast strategy even on a conventional PC.

6 Conclusion

A lot of methods have been proposed for the kinematic chain isomorphism problem. However,
the tool is still needed in building intelligent systems for product design and manufacturing.
Therefore, a new discrete neural approach has been developed specially suitable for automatic
computation since it provides directly interpretable solutions and does not demand tuning of
parameters. We have successfully tested the examples solved by other approaches developed
for identifying isomorphic chains published in the recent bibliography. The presented results
illustrate the effectiveness of the discrete neural algorithm. Moreover, an advantage of the
proposed neural network is that, though it can be implemented on a conventional PC, it can
also be implemented in parallel, significantly increasing the convergence speed and reducing
the computation times presented in Table 1. It may be needed when the number of vertices
in a graph is very large. Besides, our network is much superior to the previously proposed
analog neural network for identifying isomorphic chains in terms of the computation time
and the interpretation of solutions.

Cubillo et al. [3] pointed out that recently methods based on eigenvalues and eigenvectors
of the adjacency matrix [3,6,7] can identify faster non-isomorphic chains than isomorphic
chains. Then, these are algorithms usually applied to quickly check out non-isomorphic
chains. In contrast, the presented neural network can identify faster isomorphic chains than
non-isomorphic chains. A Hopfield network can sometimes be trapped in a local minimum
and then it is not always possible to guarantee that the two chains are not isomorphic. Thus
we can consider neural algorithms and methods based on eigenvalues and eigenvectors as
complementary techniques.

To solve the local minima problem, the practical method proposed in this paper is selecting
different random initial states and running the fast neural algorithm until it reaches E = 0
which confirms the isomorphism. An alternative method to help the CHOM network to
escape from local minima was recently presented by Wang et al. [16]. They have improved
this network by incorporating stochastic hill-climbing dynamics. Simulation runs show that
this algorithm obtains better solutions for some problems [16,17], though the computation
time is increased. Also, the method is more complex to implement. If the mechanical designer
effort is of concern, then the simple proposed neural algorithm is a good choice to quickly
identify the isomorphism of the mechanism kinematic chain.

Appendix

Let us suppose that at time k the neuron xo is the only one that is “on" in group x and that
neuron xc is the candidate neuron in group x that is going to be “on" at time k + 1. Hence,
we have that if c �= o then �vxo(k) = −1; �vxc(k) = 1; �vxi (k) = 0, ∀i = 1, . . . , m,

i �= o, c. By substituting these values we have that the difference in the energy that would
result if only the states of the neurons in the group x is altered is

�Ex (k) = −
m∑

i=1

�vxi

⎡

⎣uxi (k) +
n∑

y=1

m∑

j=1

ωxi,y j

2
�vy j (k)

⎤

⎦

= uxo(k) − uxc(k) − 1

2
(ωxo,xo + ωxc,xc − 2ωxc,xo) = uxo(k) − [uxc(k) − Kxo,xc]
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Therefore, if the neuron with the maximum value of {uxi (k) − Kxo,xi} per group x is always
selected as the candidate neuron xc, then the energy descent, �E(k)x ≤ 0, is guaranteed
since the condition

uxc(k) − Kxo,xc ≥ uxo(k) − Kxo,xo = uxo(k)

is satisfied. Moreover, the absolute value of the energy decrease |�Ex (k)| is the maximum
possible at every time k. Observe that, since E is bounded from above, then the energy
function will converge in step ke. In this equilibrium value it is verified in every group x of
neurons that

uxo(ke) = max
j=1,...,m

{ux j (ke) − Kxo,x j }

If we activate any other neuron xc �= xo in any group x in this stable state of E , we will have
�Ex (ke) > 0 if uxc(ke)−Kxo,xc < uxo(ke) and �Ex (ke) = 0 if uxc(ke)−Kxo,xc = uxo(ke).
Therefore, the network is in a state corresponding to a local/global minimum of E .
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