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Probabilistic PCA Self-Organizing Maps
Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato, and Domingo López-Rodríguez

Abstract—In this paper, we present a probabilistic neural
model, which extends Kohonen’s self-organizing map (SOM) by
performing a probabilistic principal component analysis (PPCA)
at each neuron. Several SOMs have been proposed in the litera-
ture to capture the local principal subspaces, but our approach
offers a probabilistic model while it has a low complexity on
the dimensionality of the input space. This allows to process
very high-dimensional data to obtain reliable estimations of the
probability densities which are based on the PPCA framework.
Experimental results are presented, which show the map forma-
tion capabilities of the proposal with high-dimensional data, and
its potential in image and video compression applications.

Index Terms—Competitive learning, dimensionality reduction,
handwritten digit recognition, probabilistic principal component
analysis (PPCA), self-organizing maps (SOMs), unsupervised
learning.

I. INTRODUCTION

T HE concept of self-organization seems to explain several
neural structures of the brain that perform invariant fea-

ture detection [15]. These structures inspired the proposal of
computational maps designed to explore multidimensional data.
The original self-organizing map (SOM) was proposed by Ko-
honen [22], where each neuron had a weight vector to represent
a point of the input space. It was followed by the adaptive sub-
space self-organizing map (ASSOM), which was first presented
as an invariant feature detector [23]. This property has been fur-
ther studied [24], and its relations with wavelets and Gabor fil-
ters have been reported [25], [36], [37].

Each neuron of an ASSOM network represents a subset of
the input data with a vector basis. This vector basis is adapted
so that the data points of the subset are as close as possible to
its spanned vector subspace. Hence, a description of the local
geometry of the input data is built. The concept of a neuron
which represents a linear subspace can be traced to the subspace
classifier by Oja [33]. The minimization of the mean squared
error (MSE) of the projection errors on the subspaces leads nat-
urally to the principal components analysis (PCA). The ASSOM
model extends these ideas by considering the self-organization
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of subspace neurons, which can also be found in Dony and
Haykin’s optimally adaptive transform coding [13].

The ASSOM has been successfully applied to the handwritten
digit recognition problem [65] which many neural network re-
searchers have addressed [47]. Also, it has been used for texture
segmentation [43]. This work is related with a supervised variant
of the ASSOM, called supervised adaptive-subspace self-orga-
nizing map (SASSOM), first proposed by Ruiz del Solar and
Köppen [42].

Finally, SOM networks are adequate to create topographic
maps, which are representations of the input space. This ability
is inherited by the ASSOM network, which has been taken as a
standard for comparison with other algorithms that make these
maps [55].

The ASSOM does not define any probability model on the
input data. This is not the case for the generative topographic
mapping (GTM) by Bishop et al. [8], which is a constrained
mixture of Gaussians. A latent space is defined with a reduced
dimensionality, and a lattice of units is set up in the latent space.

The ASSOM lacks the ability to learn the local mean vectors.
The PCA SOM [30] solves this problem by learning both the
mean vector and the covariance matrix at each neuron. The self-
organizing mixture networks (SOMNs), by Yin and Allinson
[64], also follow this line. Unfortunately, the use of the full co-
variance matrix makes them computationally heavy for high-di-
mensional data sets.

The self-organizing mixture model (SOMM) by Verbeek et
al. [59] uses a version of the expectation–maximization (EM)
method to produce an extension of the SOM where a mixture of
restricted Gaussians is defined. Nevertheless, it has some scala-
bility problems when the size of the map grows.

Other families of SOMs include kernel-based topographic
maps [56]–[58], where Gaussian kernels are defined around
a centroid, and topographic independent component analysis
(ICA) [19], which introduces the use of ICA instead of PCA.

Our aim here is to develop a self-organizing model with on-
line learning of the local subspaces of an input distribution,
which is based on the probabilistic PCA (PPCA) framework.
Furthermore, our proposal has a low complexity both in the size
of the map and in the input space dimension, so that it is suited
for high-dimensional data. This sort of data sets is common in
certain typical applications of SOMs such as exploratory data
analysis [12] and content-based data retrieval [27], [28].

The outline of this paper is as follows. Section II explores the
links between subspace methods, density modeling, and self-or-
ganization. In Section III, we present the enhanced model, called
probabilistic principal component analysis self-organizing map
(PPCASOM). Section IV is devoted to complexity analysis. A
discussion of the differences among known models and our pro-
posal is carried out in Section V. Finally, computational results
are shown in Section VI.

1045-9227/$26.00 © 2009 IEEE
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II. SUBSPACE DENSITY MODELING AND SELF-ORGANIZATION

As we have seen, high-dimensional spaces arise naturally in
many pattern recognition and machine learning areas. Conven-
tional PCA is defined as an orthogonal linear transformation
where the most variance of the original data comes to lie in the
first coordinates of the transformed data. The transformation
is given by , where is the original data, and

is the transformed data, both of dimension . As known,
is the mean vector, and is the matrix of eigenvectors
of the data covariance matrix , which is decomposed as

. The eigenvalues in the diagonal matrix are
sorted in decreasing order. Hence, conventional PCA shows that
the optimal linear dimensionality reduction to dimensions,
with , involves an orthogonal projection on the principal
directions given by the eigenvectors corresponding to the
largest eigenvalues of : . The optimality is
in the least squares sense, and the optimal reconstruction error
is . This starting point has given rise
to many dimensionality reduction techniques, in particular,
PPCA and subspace methods [61].

PPCA [53] models the probability distribution of the input
data by a multivariate Gaussian. This extends conventional
PCA, which does not define any probability model (two exam-
ples of non-Gaussian PCA for mixture modeling can be found
in [66] and [39]). In order to achieve dimensionality reduction,
PPCA considers that the input data come from a linear trans-
formation of a -dimensional vector of latent variables. This
yields a probability density model which corresponds to the
-dimensional principal subspace of the data, with the addition

of isotropic noise in all directions. The optimal dimensionality
reduction can be obtained by projection of the original data on
the principal subspace, just as in conventional PCA. Hence, the
trailing directions are considered noisy and they are not
even estimated.

On the other hand, the subspace method by Moghaddam and
Pentland [35] splits the input space into two orthogonal sub-
spaces: the principal subspace of dimension and its comple-
mentary subspace of dimension . The probability density
for the original input space is built by the product of two inde-
pendent Gaussians, one for each subspace. The original data are
projected on the two subspaces, but the projection on the com-
plementary subspace is not explicitly computed.

Hence, we obtain a procedure which has similarities to PPCA,
and in fact has been proven to be equivalent [61]. The two ap-
proaches need to estimate the mean vector and the covari-
ance matrix . The main difficulty is the robust estimation of ,
since a plain maximum-likelihood estimator will fail to produce
a full rank because of the small sample size with respect to the
high dimensionality of the input space. The solution is to restrict

so that it has less degrees of freedom, in order to obtain robust
estimations. The subspace method projects the original data into
the eigenspace of , and then uses only the leading directions.
The remaining projections are estimated by a parameter
which can be shown to correspond to PPCA’s isotropic noise pa-
rameter. Therefore, the two methods are seen as different ways
to implement a robust estimator of for high-dimensional data
with comparatively small sample sizes.

As we see, the search for linear subspaces where the data lie is
guided in a probabilistic framework by the PCA principal direc-
tions associated with the leading eigenvalues of the covariance
matrix of a Gaussian distribution. These models are easily ex-
tended to mixtures of Gaussians. Then, we have linear trans-
formations, one per mixture component. In principle, the mix-
ture components are not bound to each other, and they are ad-
justed to optimize some objective function, such as the log-like-
lihood of the input data. Nevertheless, it is more convenient in
data visualization applications to enforce the self-organization
of the subspaces. This yields faithful representations of the input
distribution, which can be used to explore the structure of com-
plex high-dimensional data sets. Under the robust estimation
perspective considered before, self-organization of linear sub-
spaces can be regarded as a way to impose additional conditions
in the estimated covariance matrices, since every covariance
matrix is constrained to be similar to those of the neighboring
units. This procedure effectively reduces the variability of the
covariance matrices, which leads to increased robustness against
the relative lack of input samples for large . Furthermore, the
number of input samples which contribute significantly to the
estimation of a particular covariance matrix is increased, as the
information is shared among neighboring units, and this leads
to more robustness.

Other approaches to restrict Gaussian mixture models include
enforcing the covariance matrices to lie in a low-dimensional
matrix subspace, as shown in [11]. These restrictions alleviate
the data insufficiency problem, which prevents reliable estima-
tion of full covariance mixture models.

Perhaps the best known SOM model which learns linear sub-
spaces is the ASSOM. It does not define a probability density
model, but its objective function is the average expected pro-
jection error. So, it is closely related to the reconstruction error
of PCA, since each ASSOM neuron stores a -dimensional or-
thonormal vector base which could be identified with . The
dimensionality reduction capability of these maps is somehow
reduced by the absence of a mean vector in the neurons, which
is equivalent to assume .

Other self-organizing models which do not learn subspaces,
such as the SOMM and kernel-based topographic maps, assume
Gaussian densities. Hence, we can think of them as models
where the number of retained principal directions is .
In fact, they enforce , and no PCA transformation is
performed. This implies that their covariance matrices are diag-
onal, and they only learn the variances in each direction given by
the eigenvalue matrix . We can conclude that many SOM pro-
posals include certain elements of subspace-based probability
density modeling, but not completely. Some of them do not de-
fine probability densities, and others do not learn subspaces.

It should not be inferred from the discussion above that sub-
space modeling is only suitable for the minimization of the re-
construction error. In supervised classification applications, the
relevant features for discrimination are commonly confined to
low-dimensional subspaces of the input space. In this context,
the objective is to capture the most relevant directions for clas-
sification. Aladjem [1] and Calà [9] have proposed methods
to model class-conditional probability densities with Gaussian
mixtures by projection pursuit. A related approach to supervised
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classification is given by Saito et al. [9], who search the most
discriminant subspaces by estimating the difference among the
probability distributions of the projected data belonging to each
class. In this latter case, the probability densities are not as-
sumed to be Gaussian. These methods are not so closely related
with SOMs, which are unsupervised systems in most cases.
Nevertheless, unsupervised projection pursuit methods are also
available for feature selection [20]. In these approaches, it is
desired that the probability density of the projected data is as
non-Gaussian as possible.

III. THE PPCASOM MODEL

A. Mixture Model

Each neuron of the map stores a PPCA model [53] to perform
a dimensionality reduction from the observed (input) space di-
mension to the latent (reduced) subspace dimension , with

. The observed data depend linearly on the latent vari-
ables in , with a mean vector and a noise model

(1)

The latent variables are defined to be independent and
Gaussian with unit variance and zero mean, i.e., .
The noise model is also Gaussian such that , and
the parameter matrix contains the factor loadings.
This formulation implies that the observation vectors are also
normally distributed, , with a covariance matrix

.
The PPCASOM model is defined as a mixture of PPCA

components, with prior probabilities or mixing proportions

(2)

where is the PPCA probability density associated with
mixture component

(3)

(4)

Now we need a procedure to compute in . From
PPCA, we know that the parameter matrix can be decom-
posed as

(5)

where the columns of the matrix are the eigenvectors
corresponding to the principal directions of the subspace of
neuron , is a diagonal matrix with the corresponding
eigenvalues, and is a rotation matrix which may be computed
as the matrix of eigenvectors of the matrix . Then,
the decomposition of is completed by normalization of the
columns of .

The error term can be expressed in terms of this decom-
position (see [53] for details)

(6)

where is the projection of onto the principal subspace
of neuron and is the reconstruction error corresponding to
the reconstruction vector

(7)

(8)

(9)

Finally, the determinant of can be computed as

(10)

where the are the first eigenvalues of , which are stored
in .

B. Self-Organization

At each time step , the network is presented a data sample
. We introduce a discrete hidden variable whose value

(from 1 to , where is the number of mixture components)
indicates which component generated the data sample . In
order to achieve self-organization, we only allow distribution
models for which have the property that one component is the
most probable and the probability decreases with the topolog-
ical distance to that component (see [32] and [59]). A topology
is defined in the network so that the topological distance be-
tween mixture components and is called . A flat rect-
angular lattice may be used

(11)

where is the coordinate vector of mixture component
in the lattice. Other lattice topologies and/or geometries could
be also considered, such as hexagonal lattice topologies and
toroidal lattice geometries.

Hence, we consider the following set of distributions
for :

(12)
where . Note that is the topological
distance function and is the neighborhood width, which
is a positive decreasing function of such that as

, where is the total number of time steps. A standard
choice is the linear decay

(13)

In the experiments, we have used an initial value
for topologies. This ensures that the

neighborhoods are large at the beginning, when the map needs
to be plastic.

For brevity, we note

(14)
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For each time step and distribution , we have

(15)

Then, a maximum-likelihood approach is used to decide
which distribution from has the most probability
of having generated the sample . This distribution is called
the winning distribution. The prior probabilities are
assumed equal, i.e., , and so we have

(16)

This selection of a distribution from the set of distributions
enforces the self-organization of the network. When the

winning distribution has been selected, we may compute
the posterior responsibility of mixture component for gen-
erating the observed sample , given the set of possible distri-
butions

where (17)

After this competition, the mixture components are updated
according to and in order to build a SOM.

C. Mixture Component Update

When a new sample has been presented to the network, its
information should be used to update the mixture components.
If we want to update mixture component with the information
from sample , an online version of the original EM method
of the PPCA model is required. This possibility has been ex-
amined by Sato and Ishii [45] for general PPCA mixtures. Our
online EM generates the updated values and from
the old values and the new sample . The
application of Robbins–Monro stochastic approximation algo-
rithm yields the following update equations (see the Appendix
for details):

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

where are the mixing proportions, are not normal-
ized versions of the mean vectors, are the mean vectors,

and are matrices which are used to build the PPCA
matrices , and are the noise variances. Note that

cannot be estimated directly by stochastic approxima-
tion because it is not obtained in PPCA as an accumulated sum.
This is the reason for introducing and . Finally,
is the step size of the Robbins–Monro algorithm and is typically
chosen as

(28)

In our experiments, we have found that selecting
often yields good results because the network remains plastic
long enough. So, we have used in practice

(29)

where is near to zero because higher values produce an ex-
cessive plasticity (variability) of the estimations.

Please note that (21)–(27) are coupled because they imple-
ment the EM iteration. We see in (18)–(27) that the rate at which
the new information is incorporated to the model is controlled
by the step size and the posterior responsibility .

D. Network Initialization

The initialization of the network follows the standard PPCA
initialization outlined in [52]. For each neuron , we select
samples , and we compute their mean as

(30)

The value of is not crucial, provided that it is higher than
in order to avoid degenerate vector bases. We have used

in the experiments. Then, we choose of these samples and
compute their differences with to yield the columns of a
matrix of size . After that we enter an iterative procedure
where each column of is multiplied by , which does
not need to be computed explicitly

(31)

Please note that the above equation can be evaluated in
steps by following the indicated order of evaluation

of the matrix products. After the multiplication, the obtained
vectors are orthonormalized to yield the new value of . The
orthonormalization can be accomplished by several methods; in
our implementation, we have done it by singular value decom-
position (SVD). After a few steps, this procedure converges.
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The final eigenvectors are stored into the matrix and
the corresponding eigenvalues go to the diagonal matrix

. Then, we use the following formula for :

(32)

where the trace of can be computed in steps. The
starting value of is obtained as

(33)

Now we have initial estimations for the parameters of the
original PPCA scheme. Finally, the remaining parameters can
be computed following (A.10) and (A.19)-(A.21)

(34)

(35)

(36)

(37)

E. Summary

The PPCASOM model can be summarized as follows:
1) Set the initial values , , , , ,

, and for all mixture components with (30)
and (32)–(37), respectively.

2) Choose an input sample and compute the winning dis-
tribution by (16). Use (17) to compute the posterior respon-
sibilities .

3) For every component , estimate its parameters ,
, and by (18)–(20).

4) For every component , run the EM iteration by repeated
application of (21)–(27) until the EM method converges,
i.e., until no significant changes are made. The values
obtained at convergence are the updated values ,

, , and .
5) If the map has converged or the maximum time step has

been reached, stop. Otherwise, go to step 2.

IV. COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the PP-
CASOM model. The initialization requires steps per re-
duced dimension and neuron, as stated in Section III-D, where

is a constant independent of the problem size. Hence, if the
network has neurons, the initialization of the SOM needs

steps.
Each presentation of an input sample to the network leads

to a competition, which is implemented with steps.
Then, an EM iteration is started in each mixture component,
where (21) and (22) are the most computationally expensive,

with steps. Hence, if we regard the number of EM iter-
ations as a constant, each input sample is processed by the map
in steps.

We can conclude that the PPCASOM has linear complexity in
the number of neurons . It is also linear in the size of the input
space dimension when the latent space dimension does not
grow with . Anyway the complexity in is lower than cubic
(note that ), particularly in typical dimensionality reduc-
tion applications with . This allows to process high-di-
mensional data sets, as we will see in the computational exper-
iments.

V. DISCUSSION

There are some self-organizing models in the literature with
the capability of learning local linear subspaces. Now we com-
pare them to the PPCASOM model.

1) The ASSOM model [23] is regarded as a classic example
of this kind of SOMs. It has been studied and applied ex-
tensively, as seen in the Introduction. Nevertheless, it has
serious disadvantages: first, it does not consider a mean
vector; and second, the update equations need stabiliza-
tion against “spurious” components in the basis vectors.
Furthermore, it does not define any local probability distri-
bution, so the subspaces are “crisp,” with no reference to
input noise. On the other hand, the PPCASOM learns the
mean vectors, it does not need to artificially remove some
components of the basis vectors, and it defines local PPCA
probability models. In spite of the lack of these features, the
ASSOM model does not offer any advantage in computa-
tional complexity, since it processes each training sample
in steps. It is most useful in applications which
need to map directions instead of data points.

2) The generative topographic mapping (GTM) by Bishop et
al. [8] is a constrained mixture of Gaussians where the
model parameters are determined by an EM algorithm. The
main differences with the PPCASOM are that GTM works
in batch mode and that GTM uses a single latent space
where all the local models lie, while PPCASOM builds
a local latent space per neuron. Furthermore, PPCASOM
offers the possibility of having a topology with different
dimensionality than the latent space dimensionality , and
even closed topologies (ring, toroidal, etc.), while the GTM
is unable to do so. All this allows the PPCASOM to adapt
to the input distribution with more flexibility. As before,
these disadvantages of GTM are not compensated by a
lower complexity, since GTM learns its single global latent
space with complexity , and PPCASOM learns
local latent spaces in . GTM is expected to be pre-
ferred if the task at hand needs a unique latent space, while
retaining the unsupervised learning capability of SOMs.

3) The SOMM by Verbeek et al. [59] uses a modified ver-
sion of the EM algorithm to achieve self-organization of
Gaussian models with isotropic covariance matrices. The
drawbacks of the SOMM are that it only works in batch
mode, it is only developed for isotropic covariance ma-
trices, and it has a heavy computational load because it is
quadratic in the number of neurons: for SOMM
versus PPCASOM’s . There is a speedup of
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SOMM, but then it nearly reduces to a classical batch SOM
with an isotropic covariance matrix. In this setup, SOMM
can be seen as an improvement over SOM which features
a parsimonious probabilistic model, since it does not store
principal directions.

4) The kernel topographic maps by Van Hulle [56]–[58]
define probability distributions, but they are rather con-
strained because only diagonal covariance matrices are
considered. This is a problem if the local subspaces are not
aligned with the input space coordinates, and the situation
is worse as the input space dimension grows. On the
other hand, PPCASOM does not have those constraints,
so its capability to represent complex input distributions
is higher. Furthermore, the version with different covari-
ances for each axis [58] has a complexity of per
step, which prevents its use with high-dimensional data.
Hence, the best suited version for high-dimensional data
is that with isotropic Gaussians, which we compare with
PPCASOM in the experiments.

5) The PCA SOM [30] and the SOMN model [64] both learn
the mean vector and the full covariance matrix at each
neuron. Hence, they are more flexible for the representation
of complex input data than some of the previous models,
which either do not learn the mean vector (ASSOM) or
only consider diagonal covariance matrices (SOMM, to-
pographic maps). Nevertheless, their use of the full covari-
ance matrix makes them run in complexity. There-
fore, they are not as suitable as the PPCASOM for high-di-
mensional data.

Finally, it should be noticed that we could have presented the
PPCASOM without the use of stochastic approximation, as con-
sidered in [31]. Despite the fact that the computational results
are similar, the approach considered here has the advantage that
the learning rate and the topology of the network are introduced
within the stochastic approximation framework, which allows
the convergence proof considered in the Appendix.

VI. COMPUTATIONAL RESULTS

A. Data Visualization Experiments

We have chosen 12 data sets in order to test the self-organiza-
tion and data visualization capabilities of our proposal. We have
selected high-dimensional image and video data. These kinds of
data are commonly processed by SOMs in application domains
such as image clustering and retrieval [18], [27], [28], [51] and
video indexing [5]. Furthermore, these experiments show the
self-organization capabilities of the PPCASOM model. That is,
they show how the units adjust their parameters so that a com-
putational map emerges.

The “Faces” database [50] is composed of 64 64 grayscale
images (256 gray levels) which are versions of a computer-
generated human face with different poses and lighting direc-
tions. This database has been used as a benchmark for high-di-
mensional data visualization [49], [63]. The “Zeros” to “Nines”
databases are composed of 28 28 grayscale images (256 gray
levels) of handwritten digits, and come from the MNIST Hand-
written Digit Database [29]. These databases have been used
as benchmarks for SOMs aimed to high-dimensional data pro-

TABLE I
DATA SETS AND PARAMETER SELECTIONS

cessing as ours [38], and they have been also considered for the
experimental evaluation of the visualization models mentioned
above [49], [63]. The “Video” database [10] is composed of 64

52 grayscale images (256 gray levels), which have been ob-
tained by reducing original video frames with 352 288 with
24 b/pixel (RGB color space). In all cases, the components of
the input vectors are real numbers in the interval . We have
used no other preprocessing on the original databases available
from the Internet. The details of each database and the param-
eter selections for the PPCASOM are shown in Table I.

The choice of the dimension of the latent subspaces is driven
by the dimensionality reduction needs of the application at hand.
Lower values of yield more compact representations of the
input data, but they will be less faithful (lower data likelihood).
On the other hand, higher values of correspond to more ac-
curate accounts of the variability of the data (higher data likeli-
hood), but they could compromise the ease of visualization. The
amount of data to be visualized is also important, as there is no
point in selecting a high if there is not enough variability in the
data. Hence, we have used values of , which follow the number
of samples of each database.

The final network states are pictured in Figs. 1–3 for data sets
“Faces,” “Twos,” and “Video,” respectively. We have plotted
the mean vectors and the first eigenvectors in image format.
We can see that the network self-organizes, and that the mean
vectors and eigenvectors capture relevant features of the input
data sets. Note that each pixel corresponds to a different dimen-
sion of the input data set. In order to understand the pictures of
the eigenvectors, it is important to remember that the entries of
an eigenvector measure the amount of variability (dispersion)
in each dimension with respect to the mean vector. The posi-
tive elements of the eigenvectors have been drawn in red, and
the negative elements in blue (more color saturation indicates a
larger value; color version of the figures are available in an on-
line version of this paper). Only the changes of sign are relevant,
and not the sign itself, because we can negate an eigenvector
to obtain other eigenvector pointing in the same direction. The
null elements of the eigenvectors are drawn in black, and they
correspond to the dimensions with no variability with respect
to the mean. Note that the pictures of the mean vectors are in
gray levels because the input values lie in the interval , and
hence, the mean vectors are nonnegative.

In order to compare the performance of the PPCASOM model
with similar proposals, we have selected the SOMM by Verbeek
et al. [59] and the joint entropy maximization kernel-based topo-
graphic maps (KBTM) by Van Hulle [57]. We have considered
the homoskedastic version of Van Hulle’s maps because the het-
eroskedastic version is per step, which limits its use with
the considered databases.
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Fig. 1. Results for the “Faces” database: (a) mean vectors and (b) first eigen-
vectors.

The optimized version of SOMM has been used for the tests.
We have simulated the KBTM for 2 000 000 steps, with param-
eters , .

Since the three self-organizing models we are comparing de-
fine probability distributions, we have considered the average
negative log-likelihood (ANLL) as the performance measure

(38)

We have used the T-test to check the statistical significance of
the advantage of PPCASOM results over SOMM and KBTM.
The difference has been found to be statistically significant for
all databases and topologies (less than 0.015 probability that
the difference between the means is caused by chance), except

Fig. 2. Results for the “Twos” database: (a) mean vectors, (b) first eigenvectors,
(c) second eigenvectors, and (d) third eigenvectors.

for “Faces” with SOMM and 64 1 topology. In this case, the
probability that the difference between the means is caused by
chance is 0.1007.

Hence, our proposal achieves a better self-organized repre-
sentation of the considered input distributions with a small com-
putational complexity.

The ANLL values are expected to be lower (which is better)
as the number of units grows. Hence, we have fixed
units in all the experiments. The results of the tenfold cross val-
idation are shown in Tables II and III, with the standard devia-
tions in parentheses. We have considered two different topolo-
gies: 2-D rectangular maps with 8 8 units (Table II) and 1-D
maps with 64 1 units (Table III). We can see that the PP-
CASOM clearly outperforms SOMM and KBTM in all the tests.

B. Image Compression Experiments

In this section, we explore the ability of the PPCASOM to
build parsimonious representations of image data, when com-
pared with other SOMs which define probability distributions
such as the KBTM and the SOMM. We also include conven-
tional PCA results for comparison with a classical linear tech-
nique. Image compression by SOMs is an active area of re-
search, both theoretical and applied. Some recent proposals are
[2], [3], [6], [40], and [48]. As the PPCASOM is a linear sub-
space model, it is natural to represent the input data by its pro-
jection on the orthonormal vector basis of each unit. The unit

which yields the least reconstruction error of an input sample
is given by

(39)

where the reconstruction vector is obtained with (9). Note
that we have dropped the subindex in for clarity. This unit
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Fig. 3. Results for the “Video” database: (a) mean vectors, (b) first eigenvec-
tors, and (c) second eigenvectors.

is used to obtain the reduced version of

(40)

TABLE II
ANLL RESULTS WITH 8 � 8 RECTANGULAR TOPOLOGY

(STANDARD DEVIATIONS IN PARENTHESES)

TABLE III
ANLL RESULTS WITH 64 � 1 RECTANGULAR TOPOLOGY

(STANDARD DEVIATIONS IN PARENTHESES)

where the reduced (projected) vector has dimensions .
The optimal reconstructed vector is

(41)

with given by (39). For conventional PCA, a similar approach
is followed, but with only one global vector base . For the
KBTM and SOMM models, each input sample is represented
by the mean vector of the unit which is closest (in the MSE
sense) to .

In the image compression context, it is convenient to split
the original image into equally sized windows, so that each
window is an input vector. Here we have used windows of 8 8
pixels, which is a common choice in many cases such as JPEG
[60]. This corresponds to an input space dimension of .
Smaller window sizes result in poor compression ratios, while
larger windows compromise image quality. On the other hand,
each component of the input vectors is an integer value in the
range , as we consider grayscale images with 8 b of pre-
cision. Since each unit of the three considered self-organizing
models stores an approximation of the mean vector, for these
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Fig. 4. Original images: (a) “Lena” and (b) “monarch.”

cases, we need to store the following data in the compressed
file.

1) The mean vectors for each unit. First they are rounded to
8 b, and then they are Huffman encoded to remove the
redundancy [17].

2) The index of the best matching unit for each window of
the original image. These integers are represented with the
least possible number of bits, and then Huffman encoded.

For conventional PCA, we only need to store the global mean.
Note that the encoding has been exactly the same in the four
cases in order to make a fair comparison. Only in the PPCASOM
and PCA cases we need to store additional data.

1) The orthogonal vector bases for each unit are repre-
sented with 32-b floating point numbers. We make use of
the fact that these real numbers are in the range ,
since they are part of unit norm vectors.

2) The components of the projected vectors are quantized
with a variable number of bits (from 1 to 10 b) and run
length encoding of the sequences of zero values. The quan-
tization procedure involves the division of each component
of by an integer constant, the rounding of the obtained
quotient, and the codification of the resulting integer with
the desired number of bits. Finally, the resulting string of
bits is Huffman encoded. We have tuned the quality of the
compression by choosing smaller integer constants to ob-
tain more quality, and vice versa.

Fig. 5. MSE versus BPP for the “Lena” image. Note that nearer to the coordi-
nate origin is better.

Fig. 6. MSE versus BPP for the “monarch” image. Note that nearer to the co-
ordinate origin is better.

We have divided the input data randomly into two disjoint
subsets: the training set, with 90% of the windows, and the test
set, with the remaining 10%. The data compression performance
has been evaluated by two measures. First, the MSE per pixel
has been computed for the test set

(42)

where is the number of windows of the test set, and
is the optimal reconstructed vector. For the KBTM and the

SOMM, this is equal to the best matching mean vector, in the
MSE sense. For the PPCASOM and the PCA, it is computed
with (41); for conventional PCA, we do not need to choose
among units because there is only one vector basis. On the other
hand, the size of the compressed file has been considered, ex-
pressed as number of bits per pixel (BPP)

(43)
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Fig. 7. Detail of “Lena”: (a) original (8 b/pixel), (b) PPCASOM compressed
(0.6696 b/pixel), (c) SOMM compressed (0.7953 b/pixel), (d) KBTM com-
pressed (0.7212 b/pixel), and (e) PCA compressed (0.8132 b/pixel).

where is the size of the compressed file in bits, and
is the number of pixels of the image.

The parameter selection for the three models has been the
same as in Section VI-A, except for the size of the maps, which
has been varied in order to tune the quality of the compression.
As the maps are larger, the quality of the reconstructed image
is better, but there are more storage requirements. For KBTM
and SOMM, we have experimented with maps with sizes in
the range from 5 5 to 50 50 units. For the PPCASOM,
since each unit has more compression capability, we have used
smaller maps: from 2 2 to 5 5 units, with sizes of the vector
bases in the range from to 60. In the three cases, only the
results for the best performing model sizes have been shown in
the plots. For conventional PCA, we have tested basis vector
sizes in the range from to 60.

We can see in Fig. 4 two benchmark images taken from the
University of Waterloo Repertoire [54]. The “Lena” image has
512 512 pixels, and “monarch” has 768 512 pixels. The
plots of MSE versus BPP are in Figs. 5 and 6. Please note that
every model yields its own BPP values, so they cannot be forced
to produce the exact same BPP. The results show that our pro-
posal achieves lower error at all bit rates in both of the tested im-
ages. It is worth mentioning that the KBTM model is not able

Fig. 8. Detail of “monarch”: (a) original (8 b/pixel), (b) PPCASOM com-
pressed (1.0082 b/pixel), (c) SOMM compressed (1.1780 b/pixel), (d) KBTM
compressed (1.2047 b/pixel), and (e) PCA compressed (1.1698 b/pixel).

to learn correctly when the map size is too large for the vari-
ability of the input data set. This causes the KBTM data series
to have different lengths in the plots. On the other hand, Figs. 7
and 8 show that PPCASOM yields better visual image quality
with less bit rate. We can conclude that PPCASOM is able to
take advantage of its linear subspace self-organization ability to
achieve efficient dimensionality reduction.

C. Video Compression Experiments

The third set of experiments studies the capability of our
proposal to compress video data. SOMs have been proposed
recently as vector quantizers for video compression [14], [41].
Here we evaluate the potential of PPCASOM, KBTM, and
SOMM for this purpose. Additionally, we include conventional
PCA results for comparison with a linear technique, as in
Section VI-B.

Lossy compression of video data is commonly performed by
dividing the frame (picture) sequence into small groups of pic-
tures (GOPs). Each GOP contains three types of frames [46].

1) Intraframes (I-Frames) are complete images. They are
compressed completely independent of other frames.
Hence, the coding of I-Frames is a standard lossy image
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Fig. 9. MSE versus kilobits per second (kb/s) for the “container” video. Note
that nearer to the coordinate origin is better.

Fig. 10. MSE versus kilobits per second (kb/s) for the “Paris” video. Note that
nearer to the coordinate origin is better.

compression problem. Typically, the first frame of a GOP
is an I-Frame.

2) Predicted frames (P-Frames) are images within the GOP
that are created using information from preceding images.
Typically, the difference between the P-Frame and the first
frame of the GOP (which is an I-Frame) is lossy com-
pressed.

3) Bidirectional frames (B-Frames) are images within the
GOP that are created using information from preceding
images and images that follow. The usage of B-Frames
needs the evaluation of which other images will do the
best to approximate the B-Frame. Since this is a complex
issue in its own, we are not using B-Frames in these ex-
periments in order to avoid side effects which could make
the comparison unfair.

Additionally, each image is divided into small blocks of
pixels in order to perform the lossy compression. In our exper-
iments, we have considered a GOP length of 12 frames, i.e.,
we have the first I-Frame and 11 following P-Frames which
are coded as the differences with respect to the I-Frame. In
each frame, we have used blocks of 8 8 pixels, and we have
compressed only the component (luminance), which is given
as an integer in the range . Both choices (GOP length

Fig. 11. Detail of the 51st frame of “container”: (a) original (20.2752 Mbps),
(b) PPCASOM compressed (3.0714 Mb/s), (c) SOMM compressed (3.2522
Mb/s), (d) KBTM compressed (1.4188 Mb/s), and (e) PCA compressed (3.1436
Mb/s).

and block size) are typical in MPEG, for example [46]. This
means that we have input vectors of dimension and two
SOMs to be trained for each GOP: one for the I-Frame and the
other for the 11 difference images of the P-Frames. We have
divided the input data for each SOM randomly into two disjoint
subsets: the training set, with 90% of the blocks, and the test
set, with the remaining 10%. The encoding of the SOMs has
been the same as in Section VI-B

The evaluation of the results has been similar to the image
compression experiments. First, the MSE per pixel has been
computed for the test sets, with (42). On the other hand, the
size of the compressed file has been considered, in this case ex-
pressed as kilobits per second (kb/s) of video

(44)

where is the size of the compressed file in kilobits, and
is the duration of the video sequence in seconds.

We have selected two freely available benchmark video se-
quences from the Xiph.org Test Media [62]. They are commonly
used for video compression evaluation [4], [7], [16], [21] [34].
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Fig. 12. Detail of the 855th frame of “Paris”: (a) original (20.2752 Mb/s), (b)
PPCASOM compressed (4.2695 Mb/s), (c) SOMM compressed (4.4292 Mb/s),
(d) KBTM compressed (2.2345 Mb/s), and (e) PCA compressed (4.7050 Mb/s).

The original sequences are in the uncompressed common in-
terchange format (CIF), with frames of 352 288 pixels. The
parameter selection for the three models has been the same as
in Section VI-B. For the KBTM and the SOMM, we have ex-
perimented with map sizes in the range from 2 2 to 30 30
units. For the PPCASOM, we have used smaller maps because
each unit has more compression capability: from 2 2 to 5
5 units, with sizes of the vector bases in the range from
to 60. In the three cases, only the results for the best performing
model sizes have been shown in the plots. The same range of
vector base sizes (from to 60) has been used for conven-
tional PCA.

The plots of MSE versus kilobits per second are in Figs. 9 and
10. As every model yields its own kilobits-per-second values,
they cannot be forced to produce the exact same kilobits per
second. It can be seen that our proposal achieves lower error at
all bit rates in both of the tested videos. The KBTM data series
end sooner for the same reason as in the image compression ex-
periments, i.e., it does not learn correctly with larger map sizes.
On the other hand, Figs. 11 and 12 show that PPCASOM yields
better visual quality with less bit rate. As in the image com-
pression experiments, these results indicate that PPCASOM is
suitable for dimensionality reduction, due to its linear subspace
self-organization ability.

VII. CONCLUSION

We have presented a probabilistic self-organizing neural
model, which features online learning of the local principal
subspaces of the input data. It is based on a mixture of Gaussians
where only a certain number of relevant principal directions
is considered. It is particularly suited for high-dimensional data
because it has a low computational complexity. Experimental
results have been presented that show the self-organization ca-
pabilities of the model and its performance in image and video
compression applications. In particular, it outperforms two
SOMs based on mixtures of homoskedastic Gaussians. Hence,
our model achieves both scalability and a correct representation
of the input distribution.

APPENDIX

STOCHASTIC APPROXIMATION

First, we consider the original (batch) M-step equations for
and at time step (see [53])

(A.1)

(A.2)

(A.3)

(A.4)

where the corresponding E-step equations are

(A.5)

(A.6)

(A.7)

Several weighted means appear implicitly in (A.1)–(A.4), where
the weights are the responsibilities . Let
be a vector comprising the parameters for mixture component
, and let be an arbitrary function of and the input

sample . Then, we define the weighted mean of as

(A.8)

If we have samples (finite case), the linear least squares ap-
proximation for is

(A.9)

As , the approximation of (A.9) converges to the exact
value given by (A.8). In this case, we can rewrite equations
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(A.1)–(A.4) in terms of the weighted means

(A.10)

(A.11)

(A.12)

(A.13)

On the other hand, we can apply the Robbins–Monro sto-
chastic approximation algorithm (see [26]) to estimate itera-
tively the value of the weighted means

(A.14)

(A.15)

where is the step size, which must satisfy the following
conditions in order to guarantee convergence of the Rob-
bins–Monro method:

(A.16)
In order to fulfill these requirements, is typically selected
as

(A.17)

On the other hand, (A.15) is more conveniently written as

(A.18)

Now we derive an online EM algorithm by applying (A.18) to
(A.10)–(A.13). First, we define three auxiliary variables

(A.19)

(A.20)

(A.21)

The corresponding update equations are

(A.22)

(A.23)

(A.24)

Then, we are ready to rewrite (A.10)–(A.13)

(A.25)

(A.26)

(A.27)

(A.28)

Proposition: If (A.16) holds, then the stochastic approxima-
tion algorithm of (A.25)–(A.28) converges to a maximum of the
likelihood.

Proof: The general form of the Robbins–Monro stochastic
algorithm is

(A.29)

where, in our case, we take

(A.30)

That is, we include all the weighted means in the current es-
timation vector . We also take

(A.31)

where the new data to be incorporated into the estimation is

(A.32)

In the above equation, is the complete
parameter vector of the SOM, and is the distribution set
which is used to enforce self-organization at time step . The
goal of the stochastic algorithm is to find a root of the equation

(A.33)

where

(A.34)
and is the limit distribution set

(A.35)

which is such that the tend to as

(A.36)

In order to prove the convergence of the algorithm, we are
going to prove that the “noise” in the observation is a mar-
tingale difference (see [26]). That is, there is a function of

such that

(A.37)

This is readily verified

(A.38)
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Note that only depends on and , because
is obtained from and can be computed from . So
we have that

(A.39)

where is a martingale difference. The associated “bias”
process is defined as

(A.40)

We can guarantee convergence by proving the following three
conditions:

(A.41)

(A.42)

(A.43)

Next we examine the first condition

(A.44)

The above value is finite if we assume that the input distri-
bution has a compact support. This assumption should hold in
practice, since real data always appear in a finite domain. Alter-
natively, we can relax this assumption by considering that the
input density decreases exponentially as .

Now we study the second condition

(A.45)

This limit is zero because (A.36) implies that

(A.46)

Finally, for the third condition, we have

(A.47)

which is also zero because of (A.36). In turn, this means that the
limit

(A.48)

is zero since it is the norm of a finite sum of two
factors where both tend to zero.

Hence, we have proved that the algorithm converges to a root
of (A.33). At convergence, we have

(A.49)
which is equivalent to the maximum-likelihood condition

(A.50)

where

(A.51)

because (A.49) is a fixed point of (A.10)–(A.13).
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