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A New Multivalued Neural
Network for Isomorphism
Identification of Kinematic Chains
A lot of methods have been proposed for the kinematic chain isomorphism problem.
However, the tool is still needed in building intelligent systems for product design and
manufacturing. In this paper, we design a novel multivalued neural network that enables
a simplified formulation of the graph isomorphism problem. In order to improve the
performance of the model, an additional constraint on the degree of paired vertices is
imposed. The resulting discrete neural algorithm converges rapidly under any set of
initial conditions and does not need parameter tuning. Simulation results show that the
proposed multivalued neural network performs better than other recently presented
approaches. �DOI: 10.1115/1.3330427�
Introduction
Isomorphism identification between graphs is an important

roblem in many science and engineering applications but also
omputationally expensive. In the process of mechanical design,
raph theory has been widely applied to represent structures of
echanisms and identify isomorphism of kinematic chains. De-

ecting possible structural isomorphism between two given chains
s one of the major problems encountered in intelligent computer
ided design �CAD� for the design of kinematic chains. As re-
ently pointed out by Cubillo and Wan �1�, most published algo-
ithms still leave a lot to be desired in different aspects, such as
isual inspection, simplifying procedure of identification and
dapting automatic computation.

To achieve reliable isomorphism identification algorithms for
ntelligent CAD mechanisms, novel evolutionary approaches have
een recently proposed �2,3�. However, with ant algorithm the
olution tends to be unstable while solving the small-scale prob-
em since in this case it is difficult to obtain appropriate param-
ters �3�. Some spectral methods, that possess the advantages of
dapting automatic computation, have been recently presented to
dentify isomorphic chains. In 2001, the He–Zhang algorithm
4,5�, a new eigensystem approach, was proposed. This algorithm
as improved in 2005 �6�. In 2002, Chang et al. �7� presented a

pectral method for mechanism kinematic chain isomorphism
dentification. In 2005, Cubillo and Wan �1� pointed out some
undamental errors in the theory presented by Chang et al. �7� and
eveloped another procedure to identify isomorphic chains. How-
ver, these works �1,7� do not clearly specify the inadequacies and
he possible modes of failure of the eigenvector approach. In
006, Sunkari and Schmidt �8� critically reviewed some spectral
ethods, provided a correct proof and presented an eigenvector

pproach. Our simulation results show that this method implies a
igh computational cost and cannot be useful for kinematic chains
ith more than 14 links.
An alternative direction for kinematic chain isomorphism de-

ection has been recently presented based on neural networks
9,10�. Neural networks allow fast parallel computation, which
ay be needed when we deal with large kinematic chains. Large

inematic chains are applied in robotics and are a useful model for
tudying biological macromolecules. Synthesis of molecular
tructures plays a very important role in predicting molecular
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properties, discovering new materials and designing novel drugs.
Molecular simulation has much in common with the study of ro-
botics. It is increasingly believed by scientists �11� that the prac-
tical and viable approach to the design and fabrication of artificial
nanodevices and machines is to use proteins, which are commonly
modeled as large kinematic chains.

Kong et al. �9� presented a neural model for kinematic chain
isomorphism detection based on analog Hopfield’s neural network
�12�. In 2007, Galán-Marín et al. �10� highlighted some of the
problems on the use of this network for the graph isomorphism
problem. They proposed a binary discrete neural network for this
problem �10� based on the competitive Hopfield model �CHOM�.
The lack of computational effectiveness of both the CHOM net-
work �10� and the eigenvector approach �8� to solve kinematic
chain isomorphism problems with more than 14 links led us to
design a new neural algorithm. In this paper, the neural network
multivalued recurrent model �MREM� �13� is applied to solve the
graph isomorphism problem. In order to improve the performance
of the model, one modification to the energy function has been
considered in which an additional constraint on the degree of
paired vertices is imposed. The effectiveness of the resultant net-
work does not seem to be decreased as the size of the graph is
increased.

2 Architecture of the Proposed MREM Network
The proposed MREM is characterized by the neuron outputs

taking value in a discrete set, denoted by M= �m1 ,m2 , . . . ,mL�.
The vector V whose components are the corresponding neuron
outputs V= �v1 ,v2 , . . . ,vn� is called state vector. If vi is the state of
neuron i, then vi�M. Associated to each state vector, an energy
function similar to Hopfield �12� can be defined as

E�V� = −
1

2�
i=1

n

�
j=1

n

wi,j f�vi,v j� + �
i=1

n

�i�vi� �1�

where W= �wi,j� is the synaptic weight matrix, expressing the con-
nection strength between neurons, f :M�M→R is the so-called
similarity function, and �i :M→R is the generalization of the
biases �i�R present in Hopfield’s model.

The aim of the network is to minimize the energy function in
Eq. �1�, i.e., to achieve a stable state corresponding to a local
�global, when possible� minimum of the energy function, which is
usually identified with the objective function of the problem to
solve. Many computational dynamics can be defined for this
model, that is, several neuron updating schemes are available pro-

vided the versatility of the network. This means that more than

ring MARCH 2010, Vol. 10 / 011009-1
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ne neuron can be updated at the same time, in parallel. This is
chieved by defining the input �synaptic potential� for neurons p
nd up as the opposite of the energy increase when neuron p is
pdated, that is, up=−��E�p. If up�0, then the associated update
educes the value of the energy function. Otherwise, since no
mprovement is made by the update, it is not done.

2.1 Mapping the Kinematic Chain Isomorphism Problem
n to the MREM Network. A mechanism kinematic chain can be
niquely represented by a graph whose vertices correspond to the
inks of the chain and whose edges correspond to the joints of the
hain. Two graphs are said to be isomorphic if there exists a
ne-to-one equivalence relation between their vertices and edges
hat preserve the incidence. It follows that two isomorphic graphs

ust have the same number of vertices and the same number of
dges and the degrees of the corresponding vertices must be equal
o one another. As demonstrated in Ref. �8�, the graphs repre-
ented by the adjacency matrices A and B are isomorphic, if and
nly if B= PAPT, where P is an orthogonal permutation matrix
uch that PT= P−1. As applied in Ref. �3�, a solution of the graph
somorphism problem can be represented as a permutation of the
ows and columns of the adjacency matrix A�n�n�.

Let us consider a MREM network where M= �1,2 , . . . ,n�, that
s, only state vectors V representing permutations of the numbers
1 ,2 , . . . ,n� are the feasible states. This means that V is an abbre-
iate notation for the permutation matrix P= �pi,j� such that pi,j
1 if, and only if, vi= j, otherwise it is 0. With this notation, the
ermuted matrix will be A�= �avi,vj�. Given two graphs with adja-
ency matrices A�n�n� and B�n�n�, the energy function to be mini-
ized can be expressed as

E�V� =
1

2�
i

�
j

�avi,vj
− bi,j�2 = − �

i
�

j

�avi,vj
bi,j� + constant

his function measures the differences between the permuted ma-
rix A� and B. It achieves its global minimum E=0 when A�=B,
hat is, A and B are isomorphic. If we skip the constant term and
efine the synaptic weights wi,j =2bi,j, the similarity function

f�x ,y�=ax,y and �i�x�=0 for all i, we obtain the identification
etween the energy function of MREM, Eq. �1�, and the objective
unction of the problem. With this identification, computational
ynamics can be developed to solve the problem. We have con-
idered the updating of two neurons on every step, interchanging
heir outputs. Suppose that neurons p and q are marked for updat-
ng, that is, vp�=vp�t+1�=vq�t� and vq�=vq�t+1�=vp�t� �where t
enotes discrete time�, and vi�=vi�t+1�=vi�t�=vi for i� �p ,q�.
he synaptic potential associated to this update is u=−��E�p,q.

u = E�V� − E�V�� = −
1

2�
i

�
j

�i,j �2�

here �i,j =wij�f�vi ,v j�− f�vi� ,v j���=2bij�avi,v j
−avi�,v j�

�. It is easy
o observe that �x,x=0 and �x,y =�y,x since adjacency matrices are
ymmetric. Particularly for i , j� �p ,q�, we obtain �i,j =0 since

i�=vi and v j�=v j. For j= p , i� �p ,q� we obtain �p,i=�i,p

2bi,p�avi,vp
−avi,vq

� since vi�=vi , vp�=vq. Analogously �q,i=�i,q

2bi,q�avi,vq
−avivp

�. Observe that �p,q=2bp,q�avp,vq
−avq,vp

�=0
ue, to the symmetry of A. Then, we can deduce that �q,p=0 and
p,p=�q,q=0.
With these considerations, Eq. �2� can be expressed by

u = −
1

2��i

��i,p + �i,q� + �
i

��p,i + �q,i�	 = − �
i

��i,p + �i,q�

�3�

herefore, in the proposed algorithm every neuron p computes in
arallel the synaptic potential up�q�=−��E�p,q by applying Eq.

3�. Then, neuron p computes the maximum potential among all

11009-2 / Vol. 10, MARCH 2010
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possible changes ��p�=maxq�p up�q� and the corresponding neu-
ron to be updated at the same time q such that up�q�
=maxq��p up�q��. The scheduler selects p0 and q0 with ��p0�
=maxp ��p� and up0

�q0�=maxq up0
�q�, and neurons p0 and q0 in-

terchange their output. Then, all the steps are repeated until con-
vergence is detected. Since maxp,q up�q��0, the decrease of the
value of the energy function is guaranteed through iterations.
Thus, the network always achieve a local or global minimum of
the energy function. Note that a Hopfield-type network can only
ensure that, if we reach the energy value E=0, then the two graphs
are isomorphic. Then, a criterion must be applied to conclude that
two graphs are nonisomorphic. As in Refs. �9,10� we consider that
if the network does not reach the value E=0 after Nmax iterations,
this corresponds to two chains that are not isomorphic.

2.2 Mapping Additional Constraints on to the MREM
Network. In order to improve the performance of the described
MREM network, one modification to the energy function has been
considered. We base this modification on some additional con-
straints that must be verified in the optimal final solution. In a
graph G, let us denote di

�G� the degree of the ith node. If two
graphs, A and B, are isomorphic, then there is a one-to-one corre-
spondence between the degrees of the corresponding vertices in
both graphs. This means that there exists a permutation, denoted
as a state vector V= �v1 ,v2 , . . . ,vn�, such that dvi

�A�=di
�B� for all i.

This information can be included in the resolution of the problem.
It suffices to impose the minimization of the expression

T�V� =
1

2�
i

�dvi

�A� − di
�B��2 = − �

i

di
�B�dvi

�A� + constant

Thus, a new version of the energy function is obtained

E��V� = E�V� + T�V� = − �
i

�
j

bi,javi,v j
− �

i

di
�B�dvi

�A� �4�

By defining �i�vi�=di
�B�dvi

�A�, we identify Eq. �4� to that of the
energy function of the MREM model, Eq. �1�. As in the previous
section, we can compute the synaptic potential associated to the
interchange of values of neurons p and q.

u = − ��E��p,q − ��E�p,q − ��T�p,q

From the previous section, we know that −��E�p,q=−�i��i,p

+�i,q�. In addition since vi�=vi, ∀i� �p ,q�, vp�=vq, and vq�=vp, we
obtain

− �T = T�V� − T�V�� = − �
i

di
�B�dvi

�A� + �
i

di
�B�dvi�

�A�

= − �dp
�B� + dq

�B���dvp

�A� − dvq

�A��

Thus, the synaptic potential for the MREM model with addi-
tional constraints is

u = − � ��i,p + �i,q� − �dp
�B� + dq

�B���dvp

A − dvq

A � �5�

i
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Algorithm 1: MREM implementation

egin
t←0
Select random feasible state vector V= �vx , . . . ,vn�
convergence=FALSE
while not convergence do

convergence=TRUE
for p� �1, . . . ,n� do

for q� �1, . . . , p−1, p+1, . . . ,n� do
Compute up�q� from Eq. �3� and �5�

end
��p�=maxq�p up�q�

end
Select p0 such that ��p0�=maxp ��p�
if ��p0��0 then

Select q0 such that up0
�q0�=��p0�

vp0
�t+1�=vq0

�t�; vq0
�t+1�=vp0

�t�
vi�t+1�=vi�t�, i� �p0 ,q0�
convergence=FALSE

end
t← t+1

end
nd

In Algorithm 1, we present the implementation for the MREM
odel used in this work, both for the simple and for the modified

lgorithm.

Results and Discussion
In this section we present results given by the proposed MREM

etwork and by the modified MREM network in which an addi-
ional constraint on the degree of paired vertices is imposed. In
omparing our results, we have found that there is no description
f computation time in the eigenvector approaches reported in
echanical literature �1,4–8�. Then, for comparison of computa-

ional costs we have programmed in MATLAB the most recent al-
orithm presented in 2006 by Sunkari and Schmidt �8� and the
HOM network �10�.
As case studies, we consider design examples proposed in the

ecent bibliography to test methods developed for automatic com-
utation in the kinematic chain isomorphism problem �1,4–8,14�
Figs. 1 and 2�. The four algorithms were implemented on a 3
Hz Pentium IV PC with 512 MBytes RAM by MATLAB. Table 1
resents the average and maximum computation time required by
ach algorithm to solve the five selected isomorphic test problems.
he results were obtained for a total of 1000 independent runs of
ach algorithm. Numerical results show that the MREM algorithm
s much superior to both the CHOM model �10� and Sunkari’s
igenvector approach �8� in terms of computation time for all the
est isomorphic problems. Table 1 also show that an improvement
s made with the modified MREM network.

Table 2 presents the computation time required by each algo-
ithm to solve the selected nonisomorphic test problems. As
ointed in Sec. 2.1, a criterion must be adopted for a Hopfield-
ype network to detect nonisomorphic graphs. Thus, for both the
HOM and the MREM models, it is considered that if the net-
ork does not reach the value E=0 after Nmax=100 iterations, this

orresponds to a pair of graphs that are not isomorphic. For this
eason, it is not necessary to present for nonisomorphic test cases
he maximum and average computation time. We only show the
omputation time required by the CHOM and MREM networks to
erform 100 independent runs in order to ensure that we have
onisomorphic graphs. In the same way, for Sunkari’s algorithm
e show the computation time needed to check the permutation
atrices in order to confirm that two graphs are not isomorphic.
The simulation results show that both the MREM and the

HOM models take seconds to converge to a global minimum for
he selected problems. On the other hand, it can be observed that

unkari’s eigenvector approach is superior to both CHOM and

ournal of Computing and Information Science in Enginee
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Fig. 1 Different pairs of isomorphic and nonisomorphic kine-
matic chains
Fig. 2 Different pairs of isomorphic and nonisomorphic

graphs
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REM models in terms of the computation time for small sized
onisomorphic problems with 12 vertices or less. Note that in the
eural networks 100 runs must be performed, which represents an
ncrease in the algorithm running time. Nevertheless, with Sunk-
ri’s eigenvector approach the exponentially increasing computa-
ion time prohibits us from solving the nonisomorphic example
ith 15 vertices shown in Fig. 2�b� while the MREM network

akes only 1.17 s to solve this problem.

Conclusion
In this paper we design a new multivalued neural network for

somorphism identification of kinematic chains, mapping addi-
ional constraints to improve its performance. This approach is
pecially suitable for automatic computation since it rapidly pro-
ides solutions without a burden on the parameter tuning. Note
hat with some recent approaches based on ant algorithm �2,3� it is
ifficult for some cases to find appropriate parameters. Simulation
esults for nonisomorphic and isomorphic graphs with 15 vertices
r more show that the exponentially increasing computation time
rohibits us from solving the graph isomorphism problem by ap-
lying the eigenvector approach �8�. In contrast, the proposed
ultivalued network solves in seconds all the isomorphic and

onisomorphic test problems. In fact, only an average time of 0.04
is needed on a conventional PC to solve a graph isomorphism

roblem with 28 vertices while both the eigenvector approach �8�
nd the CHOM network �10� take more than 24 h to solve the
ame problem.

On the other hand, the weak point of the proposed neural model

able 2 Comparison of the computation time needed for solv-
ng the nonisomorphic test problems using the eigenvector ap-
roach of Sunkari and Schmidt, the CHOM network, the MREM
etwork, and the modified MREM network

Sunkari’s
approach CHOM MREM

Modified
MREM

igure 1�e� �ten vertices� 0.03 s 47.72 s 0.08 s 0.11 s
igure 1�d� �12 vertices� 0.02 s 93.67 s 1 s 1 s
igure 2�b� �15 vertices� �24 h 217.41 s 1.17 s 1.21 s

Table 1 Comparison of the average and max
isomorphic test problems using the eigenvect
network, the MREM network, and the modified

Graphs

Sunkari’s approach

Avg.
time

Max.
time

Figure 1�a� �eight vertices� 4.75 s 8.37 s
Figure 1�b� �eight vertices� 2.17 s 3.69 s
Figure 1�c� �ten vertices� 0.12 s 0.21 s
Figure 2�a� �14 vertices� �24 h �24 h
Figure 2�c� �28 vertices� �24 h �24 h �
s that neither of the two presented neural algorithms guarantees

11009-4 / Vol. 10, MARCH 2010
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global minima convergence. The same deficiency appears for all
optimization algorithms, such as novel evolutionary approaches
�2,3�, that is, a global optimal solution is not theoretically guaran-
teed. Therefore, it is not possible for optimization techniques to
provide theoretical basis for the case of nonisomorphic chains.
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time
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time

Avg.
time

Max.
time
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Av
tim

6.9
2.3
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pp. 182–188.

Transactions of the ASME

s.ashx?url=/data/journals/jcisb6/26013/ on 05/03/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use


