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A lot of methods have been proposed for the kinematic chain isomorphism problem.
However, the tool is still needed in building intelligent systems for product design and

manufacturing. In this paper, we design a novel multivalued neural network that enables
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a simplified formulation of the graph isomorphism problem. In order to improve the
performance of the model, an additional constraint on the degree of paired vertices is

imposed. The resulting discrete neural algorithm converges rapidly under any set of

Department of Applied Mathematics,
University of Malaga,
Campus de Teatinos s/n; 29071 Malaga, Spain

1 Introduction

Isomorphism identification between graphs is an important
problem in many science and engineering applications but also
computationally expensive. In the process of mechanical design,
graph theory has been widely applied to represent structures of
mechanisms and identify isomorphism of kinematic chains. De-
tecting possible structural isomorphism between two given chains
is one of the major problems encountered in intelligent computer
aided design (CAD) for the design of kinematic chains. As re-
cently pointed out by Cubillo and Wan [1], most published algo-
rithms still leave a lot to be desired in different aspects, such as
visual inspection, simplifying procedure of identification and
adapting automatic computation.

To achieve reliable isomorphism identification algorithms for
intelligent CAD mechanisms, novel evolutionary approaches have
been recently proposed [2,3]. However, with ant algorithm the
solution tends to be unstable while solving the small-scale prob-
lem since in this case it is difficult to obtain appropriate param-
eters [3]. Some spectral methods, that possess the advantages of
adapting automatic computation, have been recently presented to
identify isomorphic chains. In 2001, the He—Zhang algorithm
[4,5], a new eigensystem approach, was proposed. This algorithm
was improved in 2005 [6]. In 2002, Chang et al. [7] presented a
spectral method for mechanism kinematic chain isomorphism
identification. In 2005, Cubillo and Wan [1] pointed out some
fundamental errors in the theory presented by Chang et al. [7] and
developed another procedure to identify isomorphic chains. How-
ever, these works [1,7] do not clearly specify the inadequacies and
the possible modes of failure of the eigenvector approach. In
2006, Sunkari and Schmidt [8] critically reviewed some spectral
methods, provided a correct proof and presented an eigenvector
approach. Our simulation results show that this method implies a
high computational cost and cannot be useful for kinematic chains
with more than 14 links.

An alternative direction for kinematic chain isomorphism de-
tection has been recently presented based on neural networks
[9,10]. Neural networks allow fast parallel computation, which
may be needed when we deal with large kinematic chains. Large
kinematic chains are applied in robotics and are a useful model for
studying biological macromolecules. Synthesis of molecular
structures plays a very important role in predicting molecular
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initial conditions and does not need parameter tuning. Simulation results show that the
proposed multivalued neural network performs better than other recently presented
approaches. [DOI: 10.1115/1.3330427]

properties, discovering new materials and designing novel drugs.
Molecular simulation has much in common with the study of ro-
botics. It is increasingly believed by scientists [11] that the prac-
tical and viable approach to the design and fabrication of artificial
nanodevices and machines is to use proteins, which are commonly
modeled as large kinematic chains.

Kong et al. [9] presented a neural model for kinematic chain
isomorphism detection based on analog Hopfield’s neural network
[12]. In 2007, Galédn-Marin et al. [10] highlighted some of the
problems on the use of this network for the graph isomorphism
problem. They proposed a binary discrete neural network for this
problem [10] based on the competitive Hopfield model (CHOM).
The lack of computational effectiveness of both the CHOM net-
work [10] and the eigenvector approach [8] to solve kinematic
chain isomorphism problems with more than 14 links led us to
design a new neural algorithm. In this paper, the neural network
multivalued recurrent model (MREM) [13] is applied to solve the
graph isomorphism problem. In order to improve the performance
of the model, one modification to the energy function has been
considered in which an additional constraint on the degree of
paired vertices is imposed. The effectiveness of the resultant net-
work does not seem to be decreased as the size of the graph is
increased.

2 Architecture of the Proposed MREM Network

The proposed MREM is characterized by the neuron outputs
taking value in a discrete set, denoted by M={m,m,,...,m;}.
The vector V whose components are the corresponding neuron
outputs V=(vy,v,,...,v,) is called state vector. If v; is the state of
neuron i, then v; € M. Associated to each state vector, an energy
function similar to Hopfield [12] can be defined as

DD wifwiv) + 2, 6(v) (1)
i=1

i=1 j=1

1
E(V)=-7
where W=(w; j) is the synaptic weight matrix, expressing the con-
nection strength between neurons, f: M X M — R is the so-called
similarity function, and 6;: M —R is the generalization of the
biases 6; € R present in Hopfield’s model.

The aim of the network is to minimize the energy function in
Eq. (1), i.e., to achieve a stable state corresponding to a local
(global, when possible) minimum of the energy function, which is
usually identified with the objective function of the problem to
solve. Many computational dynamics can be defined for this
model, that is, several neuron updating schemes are available pro-
vided the versatility of the network. This means that more than
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one neuron can be updated at the same time, in parallel. This is
achieved by defining the input (synaptic potential) for neurons p
and u,, as the opposite of the energy increase when neuron p is
updated that is, u,=—(AE),,. If u,>0, then the associated update
reduces the Value of the energy function. Otherwise, since no
improvement is made by the update, it is not done.

2.1 Mapping the Kinematic Chain Isomorphism Problem
on to the MREM Network. A mechanism kinematic chain can be
uniquely represented by a graph whose vertices correspond to the
links of the chain and whose edges correspond to the joints of the
chain. Two graphs are said to be isomorphic if there exists a
one-to-one equivalence relation between their vertices and edges
that preserve the incidence. It follows that two isomorphic graphs
must have the same number of vertices and the same number of
edges and the degrees of the corresponding vertices must be equal
to one another. As demonstrated in Ref. [8], the graphs repre-
sented by the adjacency matrices A and B are isomorphic, if and
only if B=PAPT, where P is an orthogonal permutation matrix
such that PT=P~!. As applied in Ref. [3], a solution of the graph
isomorphism problem can be represented as a permutation of the
rows and columns of the adjacency matrix A, x,).

Let us consider a MREM network where M ={1,2,...,n}, that
is, only state vectors V representing permutations of the numbers
{1,2,...,n} are the feasible states. This means that V is an abbre-
viate notation for the permutation matrix P=(p; ;) such that p;;
=1 if, and only if, v;=j, otherwise it is 0. With this notation, the
permuted matrix will be A"=(a,;,;). Given two graphs with adja-
cency matrices A(,x,) and By, x,), the energy function to be mini-
mized can be expressed as

E(V) = lz 2 (avi,v- -
2 J
[

This function measures the differences between the permuted ma-
trix A’ and B. It achieves its global minimum E=0 when A’ =

that is, A and B are isomorphic. If we skip the constant term and
define the synaptic weights w;;=2b;;, the similarity function
Sflx,y)=a,, and 6;{(x)=0 for all i, we obtain the identification
between the energy function of MREM, Eq. (1), and the objective
function of the problem. With this identification, computational
dynamics can be developed to solve the problem. We have con-
sidered the updating of two neurons on every step, interchanging
their outputs. Suppose that neurons p and g are marked for updat-
ing, that is, v[’lzvp(t+1)=vq(t) and vt;zvq(t+1)=vp(t) (where ¢
denotes discrete time), and v]=v;(t+1)=v;(r)=v; for i &{p.q}.
The synaptic potential associated to this update is u=—(AE), ,.

bi)=-22 (ay, bi) + constant
i

J

w=EWV)-EV)==33 2, @

where A; j=w;;(f(v;,v;)— f(vl',v’)) 2b(a,, v, =] r) It is easy
to observe that A, =0 and A, ,=A, , since adjacency matrices are
symmetrlc Partlcularly for i,j & {p.q}, we obtain A, ;=0 since

v/=v; and vj—vj For j=p,i¢{p,q} we obtain A pi=Ai,

_2b,p(av ) aui,vl) since v/ =v;, v,=0,. Analogously A=A,

=2b; ,(a,, w0, ", Observe that A, ,=2b, q(av 0, b, »)=0

due, to the symmetry of A. Then, we can deduce that A d and

A, ,=4,,=0.

With these considerations, Eq. (2) can be expressed by
1
1O RED W] EEp WS

3)

Therefore, in the proposed algorithm every neuron p computes in
parallel the synaptic potential u,(q)=-(AE),, by applying Eq.
(3). Then, neuron p computes the maximum potential among all
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possible changes a(p)=max,., u,(¢) and the corresponding neu-
ron to be updated at the same time ¢ such that u,(q)
=max, ., u,(q'). The scheduler selects p, and g, with a(p)
=max, a(p) and u, (qo)=max, u, (¢), and neurons py and ¢ in-
terchange their output. Then, all the steps are repeated until con-
vergence is detected. Since max, , u,(g) =0, the decrease of the
value of the energy function is guaranteed through iterations.
Thus, the network always achieve a local or global minimum of
the energy function. Note that a Hopfield-type network can only
ensure that, if we reach the energy value £=0, then the two graphs
are isomorphic. Then, a criterion must be applied to conclude that
two graphs are nonisomorphic. As in Refs. [9,10] we consider that
if the network does not reach the value E=0 after N,,,, iterations,
this corresponds to two chains that are not isomorphic.

2.2 Mapping Additional Constraints on to the MREM
Network. In order to improve the performance of the described
MREM network, one modification to the energy function has been
considered. We base this modification on some additional con-
straints that must be verified in the optimal final solution. In a
graph G, let us denote df.G) the degree of the ith node. If two
graphs, A and B, are isomorphic, then there is a one-to-one corre-
spondence between the degrees of the corresponding vertices in
both graphs. This means that there exists a permutation, denoted
as a state vector V=(v{,vs,...,0,), such that d(A) d(B) for all i.
This information can be included in the resolunon of the problem.
It suffices to impose the minimization of the expression

T(V) = E dEB )dff) + constant
i

1
2 ()~ =~

Thus, a new version of the energy function is obtained

E'(V)=EV) +T(V) == 2 X byjay, - 2, d’d)  (4)

J i

By defining 6,(v;)=d\"d", we identify Eq. (4) to that of the

energy function of the MREM model, Eq. (1). As in the previous
section, we can compute the synaptic potential associated to the
interchange of values of neurons p and g¢.

-(AEY),,— (AE),,—(ATD),,
From the previous section we know that —(AE), ,=-2,(4;,

+4,; ). In addition since v; =v;, Vi & {p,q}, v,=v,, and v;=v,, we
obtain

E d(B)d(A> " 2 d(B) d(A)

i

== (d? +dP)(d? - dy)
P q

—AT=T(V)-T(V') =

Thus, the synaptic potential for the MREM model with addi-
tional constraints is

u==2 A+ A ) - (AP +dD)d -dy) ()
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Algorithm 1: MREM implementation

begin
t—0
Select random feasible state vector V=(v,,...,v,)
convergence=FALSE
while not convergence do
convergence=TRUE
for pe{l,...,n} do
for ge{l,....p-1,p+1,...,n} do
Compute u,(g) from Eq. (3) and (5)
end
a(p)=max, ., u,(q)
end
Select pg such that a(pg) =max,, a(p)
if a(py) >0 then
Select g, such that u,,o(q0)=a(p0)
v, (t+1)=v, (1); vqo(t+l):vp0(t)
Ui&"’ 1)=Ui(t3s i €{po,qo}
convergence=FALSE
end
t—t+1
end
end

In Algorithm 1, we present the implementation for the MREM
model used in this work, both for the simple and for the modified
algorithm.

3 Results and Discussion

In this section we present results given by the proposed MREM
network and by the modified MREM network in which an addi-
tional constraint on the degree of paired vertices is imposed. In
comparing our results, we have found that there is no description
of computation time in the eigenvector approaches reported in
mechanical literature [1,4-8]. Then, for comparison of computa-
tional costs we have programmed in MATLAB the most recent al-
gorithm presented in 2006 by Sunkari and Schmidt [8] and the
CHOM network [10].

As case studies, we consider design examples proposed in the
recent bibliography to test methods developed for automatic com-
putation in the kinematic chain isomorphism problem [1,4-8,14]
(Figs. 1 and 2). The four algorithms were implemented on a 3
GHz Pentium IV PC with 512 MBytes RAM by MATLAB. Table 1
presents the average and maximum computation time required by
each algorithm to solve the five selected isomorphic test problems.
The results were obtained for a total of 1000 independent runs of
each algorithm. Numerical results show that the MREM algorithm
is much superior to both the CHOM model [10] and Sunkari’s
eigenvector approach [8] in terms of computation time for all the
test isomorphic problems. Table 1 also show that an improvement
is made with the modified MREM network.

Table 2 presents the computation time required by each algo-

(a) @ %
rithm to solve the selected nonisomorphic test problems. As
pointed in Sec. 2.1, a criterion must be adopted for a Hopfield-
type network to detect nonisomorphic graphs. Thus, for both the
CHOM and the MREM models, it is considered that if the net-
work does not reach the value E=0 after N,,,,=100 iterations, this (0
(©) @ @

Fig. 1 Different pairs of isomorphic and nonisomorphic kine-
matic chains

corresponds to a pair of graphs that are not isomorphic. For this
reason, it is not necessary to present for nonisomorphic test cases
the maximum and average computation time. We only show the
computation time required by the CHOM and MREM networks to
perform 100 independent runs in order to ensure that we have
nonisomorphic graphs. In the same way, for Sunkari’s algorithm
we show the computation time needed to check the permutation
matrices in order to confirm that two graphs are not isomorphic.

The simulation results show that both the MREM and the
CHOM models take seconds to converge to a global minimum for
the selected problems. On the other hand, it can be observed that Fig. 2 Different pairs of isomorphic and nonisomorphic
Sunkari’s eigenvector approach is superior to both CHOM and graphs
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Table 1 Comparison of the average and maximum computation time needed for solving the
isomorphic test problems using the eigenvector approach of Sunkari and Schmidt, the CHOM
network, the MREM network, and the modified MREM network

Sunkari’s approach CHOM MREM Modified MREM

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

Graphs time time time time time time time time
Figure 1(a) (eight vertices) 475 s 837 s 6.9 s 274s 0.02s 0.12s 0.01s 0.09 s
Figure 1(b) (eight vertices) — 2.17 s 3.69 s 23s 98s 00ls 01s 00ls 006s
Figure 1(c) (ten vertices) 0.12's 0.21s 114s 473s 002s 0.13s 00Is 0.08 s
Figure 2(a) (14 vertices) >24h >24h 87.1s 4702s 003s 0.82s 00ls 1.08 s
Figure 2(c) (28 vertices) >24h >24h >24h >24h 0.07s 37.76s 00ls 1495s

Table 2 Comparison of the computation time needed for solv-
ing the nonisomorphic test problems using the eigenvector ap-
proach of Sunkari and Schmidt, the CHOM network, the MREM
network, and the modified MREM network

global minima convergence. The same deficiency appears for all
optimization algorithms, such as novel evolutionary approaches
[2,3], that is, a global optimal solution is not theoretically guaran-
teed. Therefore, it is not possible for optimization techniques to
provide theoretical basis for the case of nonisomorphic chains.

Sunkari’s Modified

approach CHOM MREM MREM
Figure 1(e) (ten vertices) 0.03 s 4772 s 0.08 s 0.11's
Figure 1(d) (12 vertices) 0.02's 93.67 s Is Is References
Figure 2(b) (15 vertices) >24 h 217.41s 117 s 1.21s

MREM models in terms of the computation time for small sized
nonisomorphic problems with 12 vertices or less. Note that in the
neural networks 100 runs must be performed, which represents an
increase in the algorithm running time. Nevertheless, with Sunk-
ari’s eigenvector approach the exponentially increasing computa-
tion time prohibits us from solving the nonisomorphic example
with 15 vertices shown in Fig. 2(b) while the MREM network
takes only 1.17 s to solve this problem.

4 Conclusion

In this paper we design a new multivalued neural network for
isomorphism identification of kinematic chains, mapping addi-
tional constraints to improve its performance. This approach is
specially suitable for automatic computation since it rapidly pro-
vides solutions without a burden on the parameter tuning. Note
that with some recent approaches based on ant algorithm [2,3] it is
difficult for some cases to find appropriate parameters. Simulation
results for nonisomorphic and isomorphic graphs with 15 vertices
or more show that the exponentially increasing computation time
prohibits us from solving the graph isomorphism problem by ap-
plying the eigenvector approach [8]. In contrast, the proposed
multivalued network solves in seconds all the isomorphic and
nonisomorphic test problems. In fact, only an average time of 0.04
s is needed on a conventional PC to solve a graph isomorphism
problem with 28 vertices while both the eigenvector approach [8]
and the CHOM network [10] take more than 24 h to solve the
same problem.

On the other hand, the weak point of the proposed neural model
is that neither of the two presented neural algorithms guarantees
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