
Energy-aware acceleration on GPUs: Findings on a

bioinformatics benchmark
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Abstract

This paper performs a complete study on performance and energy efficiency
of biomedical codes when accelerated on GPUs (Graphics Processing Units).
We have selected a benchmark composed of three different building blocks
which constitute the pillars of four popular biomedical applications: Q-norm,
for the quantile normalization of gene expressions, reg f3d, for the regis-
tration of 3D images within the NiftyReg library, bedpostx (from the FSL
neuroimaging package) and a multi-tensor tractography for the analysis of
diffusion images. We try to identify (1) potential scenarios where perfor-
mance per watt can be optimal in large-scale biomedical applications, and
(2) the ideal GPU platform among a wide range of models, including low
power Tegras, popular GeForces and high-end Titans. Experimental results
conclude that data locality and arithmetic intensity represent the most re-
warding ways on the road to high performance bioinformatics when power is
a major concern.
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1. Introduction

Bioinformatics constitutes nowadays one of the most prolific scientific
areas where GPU acceleration has been deployed. Aplications of this class
are often characterized as large-scale due to its huge computational workload.
Most of the times, its methods are memory-intensive and access very large
data structures, thus providing representative instances of the new big-data
era. Together with the SIMD (Single Instruction Multiple Data) parallelism
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led by the GPU over the last decade, the binomial has turned out to be
very effective for High Performance Computing (HPC), particularly after
the invention of CUDA (Compute Unified Device Architecture) in November,
2006, as paradigm for general-purpose computing using graphics processors
[1].

Over this avantgarde era of computing, the HPC community has analyzed
a wide range of applications of virtually every computational field, identifying
pros and cons to be efficiently mapped onto GPU devices. The ubiquitous
presence of GPU-equipped supercomputers within the Top500.org [2] has
propelled the interest for scientists to benefit from this technology and now it
is considered a very valuable investment when it comes to reduce dramatically
the computational time.

The latest generations of Nvidia GPUs, namely Maxwell (2014), Pascal
(2016) and Volta (2017), have introduced a new issue as long as GPU perfor-
mance is evaluated in modern times: Power consumption. Now, we do not
only care about acceleration factors, but also about energy consumed to com-
plete the process [3, 4, 5], particularly after GPUs have conquered massively
the Green500.org list [6]. The new performance metric is no longer GFLOPS
(Giga Floating-Point Operations Per Second), but GFLOPS/w (GFLOPS
per watt). This paper emphasizes this metric from a biomedical perspective,
analyzing four popular methods in assorted subareas:

• Q-norm [7], a quantile-based normalization method for high density
oligonucleotide array data based on variance and bias.

• NiftyReg [8], a Neuroimaging library to compute the rigid, affine and
non-linear registration of magnetic resonance images (MRIs).

• FDT [9], part of the Neuroimaging package FSL [10], to fit a proba-
bilistic diffusion model at each voxel of diffusion weighted images.

• Multi-Tensor Estimation [11], considered as the deterministic coun-
terpart of FDT, to fit three diffusion tensors at each point of the images.

This collection of methods provides a rich umbrella for discussing data
parallelism, arithmetic intensity and power efficiency in high performance
computing.

The rest of the paper is organized as follows. Section 2 introduces the
biomedical methods involved along this paper. Section 3 briefly outlines the
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infrastructure we have deployed for measuring energy on GPUs. Section 4
describe the testbed used in Section 5 along our experimental results. Finally,
Section 6 concludes.

2. Methods for our biomedical benchmark

The set of methods chosen for our energy-aware acceleration study have
been carefully chosen from different sources with the aim of complementing
each other in computational features, assembling a puzzle where we analyze
assorted issues related to performance and energy. In the following subsec-
tions we provide a short description of this benchmark.

2.1. Quantile normalization: Q-norm

Our first method is a high performance implementation of Q-norm [7],
an increasingly popular algorithm for a fast and easy to understand normal-
ization of multiple gene-expression datasets under the assumption of sharing
a common distribution. In the era of big data, we often run genetic experi-
ments that involve multiple high density oligonucleotide arrays where sources
of variation between samples of non-biological origin have to be cleaned up.
The normalization process helps to minimize this variation.

The high computational cost and memory requirements of the Q-norm
method are derived from its huge input source, typically a matrix X composed
of p > 6 millions of gene expression values and N > 1000 samples on a
regular basis [12]. N spreads over matrix columns and p does it along rows,
where a single matrix element, X[i,j], indicates the intensity for the i-th gene
expression values into the j-th sample. Values of X are positive integers which
are extracted by high density oligonucleotide microarray technology provided
by the Affymetrix GeneChip infrastructure [13] widely used in many areas
of biomedical research. Those integers are the target numbers to normalize,
usually by means of some kind of average for every array element placed in
the same quantile [14]. Oligonucleotides of 25 base pairs are used to probe
genes, with each probe pair interrogating a different part of the sequence for
a gene in what is known as a probeset [15].

In our case study, we consider N = 470 samples, each composed of p =
6.553.600 gene expression values. The input dataset was taken from the GEO
(Gene Expression Omnibus) Web repository [16] as submitted by Affymetrix
under the GeneChip Human Mapping 500K Array Set (platform GPL3718).
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The ultimate goal of Q-norm is to equalize the distribution of probe in-
tensities for each array in a set of samples [7], under the assumption that
there is an underlying common distribution for all those samples. A QQplot
tool can be used to compare if two datasets come from the same distribution
by checking that the quantiles line up on the diagonal. This suggests that
one could give two disparate datasets the same distribution by transforming
the quantiles of each dataset to have the same value, which will be their
average value. Extending this idea to N dimensions we generate a method
for finding a common distribution from multiple data vectors.

The procedure for quantile normalization can be summarized as follows:
Let qk = (qk1 , ..., qkN ) for k = 1, ..., p be the vector of the k-th quantiles for all
N array samples of length p which compose matrix X of dimensions p ×N
where each sample is a column. Then:

1. Sort each column of X to give Xsort.

2. Take the means across rows of Xsort and assign this mean to each
element in the row to get X ′

sort.

3. Produce Xnorm as output by rearranging each column of X ′
sort to have

the same ordering as original X.

This method forces the values of quantiles to be equal, which may cause
problems in the tails where it is possible for a probe to have the same value
across all the array samples. However, this case is unrealistic since probe-
set expression measures are typically computed using the value of multiple
probes.

2.2. Non-rigid registration in Neuroimaging: reg f3d within NiftyReg

A variety of neuroimaging technologies allow the structure and function
of the intact human brain to be studied with minimal invasion, providing a
better understanding of healthy states and damage when clinical surgery is
applied. Bioinformatics tools are key at all stages of neuroimaging, allowing
scientists to control highly sophisticated imaging instruments and to make
sense of the vast amounts of complex data generated by them.

The remaining methods in our benchmark share this common background,
Neuroimaging, although from different perspectives. The first one to be dis-
cussed in this work is NiftyReg, a library to perform 3D image registration,
which consists in finding a (non-rigid) transformation that maps a given 3D
image (also called volume) to a reference image, usually representing a stan-
dard coordinate space.
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Over the past few years, members of the neuroimaging research commu-
nity mainly sponsored by the NIH (National Institutes of Health) have devel-
oped a number of reliable, accurate and easy to use tools. Among them, we
highlight the Neuroimaging Informatics Technology Initiative (NIfTI) [17].

To facilitate inter-operation of (structural and functional) MRI data anal-
ysis software packages, the NIfTI Data Format Working Group proposed the
new analyze-style NIfTI data format. Thereafter, a number of NIfTI-aware
toolkits were born (e.g. FSL, AFNI, SPM, Freesurfer), with dicomnifti al-
lowing the conversion from DICOM images into the NIfTI format for Linux
users [18], among others. Later, niftilib provided a reference implementa-
tion of a C library to read, write and manipulate NIfTI images, and similarly,
counterpart versions written in Java and Matlab were created too. The source
code for those libraries was put into the public domain, and corresponding
projects were hosted at SourceForge [19].

Once all those basic pillars consolidated, scientists started to develop
libraries based on NIfTI format for many different purposes. Among them,
NiftyReg [8] emerged as a a medical image registration library mostly used
for brain analysis. It was developed by Marc Modat et al. at UCL (University
College London), along with its parent project, NifTK [20].

Its main focus is rigid, affine and non-linear registration (see Fig. 1), and
it was fully implemented on CPU using C++, and when CUDA was born, it
introduced a GPU-based implementation for Tesla (2008) and Fermi (2010)
Nvidia generations [22, 23]. In this paper, we have updated the CUDA im-
plementation to take advantage of Kepler (2012) and Maxwell (2015) GPUs,
together with our energy-aware study, for a much richer and newer analysis.

Methods in this library can also be executed from a standalone console
application, with a flag to determine whether the CPU or GPU-based version
will be used.

Based on this software infrastructure, we take as departure point the
execution of the reg f3d method (the library core) to compute the non-rigid
registration for a set of 20 volumes obtained from a MRI device, where each
volume is composed of 512 × 512 × 53 voxels (a voxel is the 3D analog of
a digital pixel). The algorithm produces as output structural images of type
1 in clinical practice, with the corresponding 3D volume of a human brain
using MRI images.

Figure 2 shows the sequence of functions that reg f3d requires to be com-
pleted, and Table 1 summarizes the functionality of those functions, which
have been transformed into optimized CUDA kernels as described in [24].
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Figure 1: Example of image registration: (Left) Original image of a given subject used as
source. (Right) Reference image of another subject. (Center) Non-linear transformation
of the source image, overlapping the reference image almost perfectly. Image from [21].

2.3. Diffusion Neuroimaging with Orientation Distribution calculation: bed-
postx within FDT

Diffusion weighted imaging (DWI) is the tool used by neuroscientists
to measure water diffusion inside brain fibers. In this type of image, the
contrast and brightness are highly related to the strength of water diffusion
in each point. The aim of DWI processing is to relate the brain image to an
underlying mathematical model of fiber orientation [25].

To this end, at each image voxel, diffusion is measured along a set of differ-
ent possible orientations, also called gradients. These gradients g1, . . . , gN ∈
R3 are confined to the sphere S2, that is, all gradients are of norm equal to
1, being N a constant preset in the MRI acquisition.

Given a specified image voxel, for each i = 1, . . . , N , a voxel value si ∈ R
is obtained by using the corresponding gradient gi. Also, a baseline (without
the application of a gradient) signal intensity s0 is acquired. There exists a
mathematical formulation relating si and the baseline s0, for voxels in which
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Figure 2: Sequence of CUDA kernels involved during the execution of the reg f3d method
within NiftyReg library.

only one diffusion direction is estimated:

si = s0e
−bgTi Dgi (1)

for all i, where b is an acquisition-specific constant and D is the diffusion
tensor in that voxel, defined by a symmetric positive-definite 3×3 matrix
that can be characterized by 6 parameters (corresponding to the terms in
the upper triangular part of the matrix).

The diffusion tensor can be visualized as in Fig. 3 (left), as two juxtaposed
ellipsoids pointing in the predominant diffusion direction.

Once determined the diffusion tensor in a voxel, computing its main eigen-
vector provides us with the predominant direction of water diffusion, aligned
with neural fibers, which allows us to reconstruct brain pathways. This pro-
cess is called tractography [26].

However, there are situations, such as fiber crossing, branching or kissing,
where there is not a single predominant direction of water diffusion.

There are two main approaches to solve these problems. The first is to es-
timate the probability function of the possible orientation of the neural fibers
within a voxel [27, 28, 29, 30, 31], instead of assuming one deterministic di-
rection. In this sense, tractography is performed by sampling this probability
function (called ODF, Orientation Distribution Function ) to obtain multi-
ple orientations and reconstruct a high number of fibers within each voxel.
Examples of ODF with 1 and 3 predominant directions are given in Fig. 3
(center right) and (right).

The second approach, to be discussed in the next subsection, consists in
expanding Eq. (1) to allow the contribution of multiple directions of diffusion
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Table 1: List of CUDA kernels involved in our implementation of the reg f3d method
within NiftyReg library (as outlined in Figure 2). They are listed from more to less weight
in the overall execution time of the reg f3d method (see percentage between parenthesis).

Kernel (computational weight) Description

spline getDeformationField3D (35,93%)
Cubic B-splines interpolation
to deform the image locally.

spline getApproxSecondDerivs3D (20,00%) Compute all the second derivatives.

resampleImage3D (15,80%) Resampling of the floating image.

spline getApproxBendingEnergy3D (7,97%)
Compute the bending energy
from the second derivatives.

ApplyConvolutionWindowAlongZ (6,13%) NMI gradient field smoothing (Z axis).

ApplyConvolutionWindowAlongY (5,57%) NMI gradient field smoothing (Y axis).

ApplyConvolutionWindowAlongX (5,26%) NMI gradient field smoothing (X axis).

spline getApprox-BendingEnergyGr3D (1,53%)
Compute the gradient
from the second derivatives.

convertNMIGr-FromVoxelToRealSpace (1,05%)
The similarity measure gradient is
converted from voxel to real space.

voxelCentric2NodeCentric (0,76%)
From the voxel-centric gradient values,
it extracts the analytical node-centric
derivative of the similarity measure.

in the interior of the brain. A 3-tensor model is visually represented in Fig.
3 (center left).

One of the most popular methods in DWI processing using the first ap-
proach is FDT (FMRIB’s Diffusion Toolbox) [9]. FDT is a software tool for
analysis of DWI which is part of the FSL (FMRIB’s Software Library), a
complete package of analysis tools for medical images (fMRI, MRI and DTI)
developed by FMRIB (University of Oxford).

FDT includes tools for preprocessing DWI data, local modelling of diffu-
sion parameters and tractography. Each stage in FDT is run separately and
can be accessible from an easy-to-use graphical user interface. As outlined
in Figure 4, FDT provides mainly a set of four methods:

• eddycorrect, for correction of eddy current distortion.

• bedpostx, for local modelling of diffusion parameters.

• probtrackx, for tractography and connectivity-based segmentation.

• dtifit, for fitting a diffusion tensor model at each voxel.
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(a) (b) (c) (d)

Figure 3: (a) One ellipsoid representing a single tensor as described in the text. (b)
Extended formulation with three tensors depicting the main diffusion directions inside a
voxel. (c) ODF with a single predominant direction estimated. (d) ODF with 3 different
fiber orientations computed. In all cases, red arrows represent the assumed main directions
given by the different models. In the ODF cases, red areas on the sphere are the most
probable fiber directions.

Figure 4: Pipeline of FDT package.
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Figure 5: Input and output data for bedpostx and bedpostx gpu.

The probabilistic tractography tools within FDT [32] are very flexible and
allow the user to generate distributions from single or multiple voxels. For an
overview of the local diffusion modelling and tractography used within FDT,
see [33]. The library is implemented on CPUs using C++, and currently,
only bedpostx has a CUDA version for GPUs (bedpostx gpu) [34].

bedpostx calculates the distribution of diffusion parameters at each voxel,
which is the more computational demanding stage for the library. In this
technique, each orientation to estimate is coded as (θi, ϕi) (for all i ≤ M ,
being M the maximum number of allowed directions). Thus, only 2 · M
parameters have to be approximated. In this approximation process, for
every voxel, there are two stages: an initial estimation of the parameters
with Levenberg-Marquadt and the computation of the distribution of the
model parameters through Markov Chain Monte Carlo algorithm.

Additionally, bedpostx can estimate crossing fibers. Inputs and outputs
for this process are outlined in Fig. 5, whereas Fig. 6 illustrates the set of
CUDA kernels involved.

As input data set for bedpostx, we have used a female subject, aged
25-29, taken from the MGH HCP Adult Diffusion of the Human Connec-
tome Project [35, 36]. The acquisition matrix was 140x140 with 1.5mm
isotropic voxel size and 1.5mm slice thickness (TR=8.8s, TE=57ms, 6/8
Partial Fourier). Overall, 96 slices where processed and the diffusion weight-
ing was applied in k = 128 directions with a b-value of 5000 s/mm2. This
original data has been preprocessed using a standard pipeline with FSL’s
Eddy Current Correction Tool and Brain Extraction Tool to prepare data for
bedpostx, where power and execution time was averaged over ten launches
to collect more stable and unbiased results.

2.4. DWI with multiple tensors calculation

As we anticipated, for voxels containing a mixed diffusion pattern (usu-
ally, branching and crossing fibers), more complex formulations can be de-
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Figure 6: The two main stages executed by bedpostx gpu, which are splitted into two
CUDA kernels each. Each bedpostx gpu launch comprises 32 iterations of the first three
kernels and 64 iterations of the last one (runmcmc).

fined as extensions of Eq. (1), using a mixture of deterministic tensors
[37, 38, 39, 40, 11, 41].

Our approach follows the line of [11] and [41] and extends it to 3 dif-
ferent tensors estimated inside each image voxel (such as the depicted in
Fig. 3 (center left)) as an alternative to the probabilistic computation of the
diffusion direction using the FDT library described in the previous section.

Deterministic tractography involves directly following the diffusion path-
ways (eigenvectors of the diffusion tensors). Using a single tensor model, we
just follow the principal diffusion direction [26]. Multi-fiber and multi-tensor
models often include techniques for determining the number of fibers present
or selecting the most appropriate diffusion direction when pathways branch
[40, 42, 43].

These three methods (calculation of one tensor, three tensors and trac-
tography) are implemented in CUDA (see Figure 7) and constitute the core
of the algorithm. Figure 8 outlines input and output data and Figure 9 its
workflow. The three tensors version is tailored to the required task and ex-
tends the single tensor solution to solve its major drawbacks. A similar input
dataset is used for running both approaches (FDT and multi-tensor), with
the purpose of analyzing acceleration factors, energy spent and correlation
between them to quantify payoffs on each side.

3. Monitoring energy

The system used is based on a Beaglebone Black, an open-source hard-
ware computer [44] combined with the Accelpower module [45], which has
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Figure 7: The two main stages executed by the multitensor tractography algorithm and
its decomposition into CUDA kernels.

Figure 8: Input and output data for the multitensor tractography algorithm..

Figure 9: Workflow for the deterministic tractography package.
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// Dec lara t ion o f v a r i a b l e s to use {\ t t pmlib } ( server , counter
and l i n e s ) .

// Clear a l l l i n e s and s e t l i n e s o f i n t e r e s t (8 INA219) .
// Connect to s e r v e r ( BeagleBone Black ) .
// Create a counter and s t a r t counter

// CODE TO MEASURE

// Stop counter
// Get and save data to a f i l e .
// F ina l i z e counter .

Figure 10: Sequence of steps upon kernel launching.

eight INA219 sensors [46] to measure current, voltage and wattage. In order
to have a real measure, it can be taken into acccount both power pins in
PCI-Express (12 and 3.3 volts) and external 12 volts connectors [47].

Accelpower uses pmlib [48], a library for measurement performance. It
is formed by two main parts, a server daemon that collects power data from
measuring devices and send to the clients; together with a client library for
communication and synchronization with server.

The methology for measuring energy begins with server daemon start-up.
The next step is modify the code as in Figure 10. Before the kernel launching
we need to declare pmlib variables, clear and set lines we need (in our case
all of them), connect to server (BeagleBone Black with Accelpower cape),
create and start a counter. After the code, we stop counter, get and save
data (to a .csv file) and at last, finalize counter.

4. Our testbed

This work analyzes the behaviour of biomedical applications on GPUs
from a wide variety of issues, namely:

• How energy is affected by GPU acceleration on every biomedical appli-
cation and GPU kernel. First, a preliminary analysis is performed in
Section 5.1 for different software methods, but limiting the hardware
platforms involved to the scope of low-power and low-end devices (see
Tables 3 and 5). Second, an illustrative comparison with a popular
domestic GeForce model, the GeForce GTX 980 GPU, is included in
Section 5.2 for our registration method, reg f3d (see central columns in
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Table 3). Third, a breakout of bedpostx into kernels will be performed
on a variety of mid-end and high-end GPUs in Section 5.4 (see Tables
7, 8, 9 and 10) to later establish a winner GPU from two perspectives:
performance and power efficiency (see Tables 11, 12 and 13). Fourth,
a similar breakout of the multitensor approach will tell us what the
contributions of the new Titan X2 GPU are (final paragraph of Section
5.5 - Table 18).

• How the input/output for the data volume to the GPU influences its
execution time and acceleration. Here we will play with the quantile
normalization method, Q-norm, in Section 5.3 (see Table 6).

• How energy is affected when we reformulate a biomedical problem to
provide more accuracy, output data and/or better analysis. Section
5.5 tackles this using our latest GPUs, the two Titan models, and the
more sophisticated software application: modelling of diffusion images,
either through probabilistic and deterministic approaches (see Tables
14, 15, 16 and 17).

Our testbed is clearly ambitious, but we do not want this completeness
goal to lead to an excessive volume of experimental numbers, so we have
carefully selected our empirical setup to make it concise but rich at the same
time. This balance is promoted by discarding some results and summarizing
others. For example, our input data set is simple: We do not vary individuals,
number of images, resolutions, formats, etcetera. And even though we have
available a wide variety of GPUs (see Table 2), only those better reflecting
every analysis were chosen for each experiment.

With the exception of our Tegra model, which is a System-on-Chip (SoC),
our set of GPUs were successively plugged on PCI-express 3 slots belonging
to an EVGA motherboard endowed with and Intel Sandy Bridge quad-core
processor running at 2.13 GHz and 16 Gbytes of DDR3 memory running
at 1600 MHz. Note that the features of our CPU platform do not play
a significant role on performance and measurements, because we monitor
energy, time and power once CUDA kernels are shifted to the graphics card
and the GPU starts computing.
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Table 2: Characterization of the GPU hardware used along our experimental analysis.

Low-power GPU Low-end GPU
GPU family Tegra GeForce
GPU model Jetson TK1 GT 640
(and generation) (Kepler) (Kepler)
Number of cores 192 384
Core Speed (MHz) 852 900
GFLOPS (peak) 326 691
Memory Size (GB) 2 2
Memory Speed (MHz) 1848 1962
Memory Width (bits) 128 64
” Bandwidth (GB/s) 28,5 14,8
Thermal Design Power (W) 11 65

Mid-end to high-end GPUs
GPU model GTX 480 GTX 680 GTX 780 GTX 980 Titan X1 Titan X2
(and generation) (Fermi) (Kepler) (Kepler) (Maxwell) (Maxwell) (Pascal)
Number of cores 480 1536 2304 2048 3072 3584
Core Speed (MHz) 1400 1006 954 1216 1000 1405
GFLOPS (peak) 1344 3090 4396 4980 7144 10157
Memory Size (GB) 1,5 2 3 4 12 12
” Speed (MHz) 3696 6000 6000 7000 7000 10000
” Width (bits) 384 256 384 256 384 384
” Bandwidth (GB/s) 177 192 288 224 336 480
Thermal D. Power (W) 250 195 250 165 250 250

5. Experimental results

5.1. Acceleration on energy-efficient GPUs

We start analyzing the execution time and power consumption on low-
power devices, to see if they are competitive against low-end GPUs (both on
a similar budget around $100) and even with a mid-end GPU ($300-$500),
which are much more popular in the marketplace. Low-power GPUs were
introduced to maximize power efficiency, as they are oriented to cell phones
and PDAs equipped with batteries where autonomy is a major concern for
potential customers. Table 3 shows that average power for our low-power
GPU, the Jetson TK1 model from Nvidia, is 4-5 watts. For our low-end
GPU, the GeForce GT 640, average power is around 20-25 watts. Note that
these devices implement a Thermal Design Power (TDP), the heat dissipation
solution, ready to fight against peaks of 11 W for the Tegra and 65 W for
the GT 640 (see Table 2).

Finally, for the mid-end GPU, the GeForce GTX 980 doubles average
power to 41 watts. However, because it is a much faster devices, the kernel
is executed on a much shorter execution time, allowing it to save energy in
the first two executions, Q-norm and reg f3d. bedpostx is the only method
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Table 3: Power measurement, execution time and energy consumption on a low-power
Tegra GPU (Jetson TK1) and a low-end GeForce GPU (GT 640) for three different
biomedical methods. Reg f3d also includes results on a mid-end GeForce GTX 980 GPU.

Biomedical method: → Q-norm reg f3d (NiftyReg) bedpostx (FDT)
Running on: → Jetson GT 640 Jetson GT 640 GTX 980 Jetson GT 640
Average power (W) 5,59 20,13 4,08 19,19 41,06 3,69 24,20
Elapsed time (s) 830,80 246,17 14,10 0,73 0,44 75,37 19,17
Energy spent (Ws) 4644,17 4955,40 57,62 14,03 18,06 278,30 464,09
Time reduction vs. Jetson 70,36% 94,82% 96,87% 74.56%
Energy reduction vs. Jetson -6.70% 75,64% 68,65% -66,76%

Table 4: Energy budget on a 28 nm. manufacturing process chip: Fetching operands costs
more than computing on them.

Computational task performed on a 28 nm. Power consumption
GPU (all Kepler and Maxwell models) (energy in picojoules)

Compu- Add operator using integer operands (ALU) 0,4
tation Mul operator using fp64 operands (FPU) 25

Fused multiply-add on fp64 operands (FPU) 40
Data Transition (milimeter traversed per bit) 0,2
movement On-chip fp64 communication [1, 10, 20 mm.] [3, 64, 250]

Efficient off-chip link 500
Memory Local access to a register file 2
access 256-bit access to on-chip 8 KB. SRAM cache 50

DRAM read/write (for an entire cache line) 16000
Instruction On an out-of-order 2010 CPU (Intel models) 2000
scheduling On an out-of-order 2015 CPU (Intel models) 560

On an in-order 2015 GPU (Nvidia models) 3
Source: [49]

where Jetson consumes less power (almost half), despite a slow-down factor
of 3.93x in execution time.

Note our selection of assorted workloads requiring hundreds of seconds
(Q-norm), units (reg f3d) and tens (bedpostx) in the GeForce GT 640,
where the intermediate workload is the major energy savings winner in Jet-
son. That way, benefits of low-power devices do not correlate with small or
large runs. Instead, they do with data access locality (see Table 4 to real-
ize about the importance of this feature in power consumption). Table 5
summarizes our findings in these respects.
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Table 5: Energy savings on a discrete GeForce GT 640 GPU versus a Jetson TK1. Work-
load has a marginal influence, but data locality highly correlates with a competitive power
consumption on discrete GPUs.

Running Workload The way data locality Energy savings in
method (seconds) is improved GT 640 vs. Jetson
Q-norm Heavy (hundreds) Using shared memory (fair) [12] -6.70%
reg f3d Low (units) Using texture memory (fine) [24] 75.64%
bedpostx Average (tens) No improvements (poor) -66.76%

5.2. Comparison with a commodity GeForce on reg f3d

Table 4 reflects the energy budget within a commodity GPU, where the
GeForce GTX 980 model represents a good example. We have chosen the
reg f3d method to compare this GPU versus the low-power and low-end
counterparts, as it is our most representative memory-bound algorithm.

The central part of Table 3 shows the numbers to pay attention here. The
GTX 980 contains 2048 processing cores, 5 times more than the GT 640 and
10 times more than the Jetson. But its execution time difference shortens to
just 1.66 times faster against GT 640, and widens to 32 times faster versus
Jetson, which plays a decisive role on energy spent.

Data access locality in our optimized version of reg f3d using texture
memory [24] explains the competitive performance and power for a GPU
with that small number of cores and memory bandwidth.

5.3. The input/output influence using Q-norm

It is common to find typical large input/output times on bioinformatics
codes. Files containing data structures are usually huge and the computa-
tional workload, together with the acceleration effort, is just a fraction of
the elapsed time. A good example is our Q-norm method, which requires
an input data set of 470 probes, 25 Mbytes each, for a total of 11.5 Gbytes
to be transfered to the GPU. Unfortunately, this processor is far away from
input/output devices, and suffers from its high latency, followed by a small
bandwidth of PCI-express.

As Table 6 shows, reading those data from the Jetson requires 1742,63
seconds, for a poor bandwidth of 6,74 Mbytes/s. On a discrete GPU, that
time is just 429,93 seconds, for a bandwidth of 27,33 Mbytes/s. And using a
RAID 0 setup of two hard disks, the Velociraptor model by Western Digital,
the time goes down to 162,32 seconds, for a bandwidth of 72,38 Mbytes/s.
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Table 6: Influence of I/O and transfer times in the actual computation time of Q-norm
on the GPU (in seconds).

Jetson TK1 GeForce GT 640
File on PCI GPU File on PCI GPU

Operation performed hard disk express processing hard disk express processing
Read from CPU 1742,63 429,93
CPU to GPU transfer 14,86 1,87
GPU computation 830,80 246,17
GPU to CPU transfer 27,13 4,10
Write from CPU 625,37 59,46
TOTAL 2368,00 41,99 830,80 489,39 5,97 246,17
Relative weight 73,06% 1,29% 25,63% 66,00% 0,008% 33,19%

Table 7: Power measurements and execution times for the Fit PVM multi kernel (alias
PVM m) within FDT.

CUDA kernel: Fit PVM multi (alias PVM m)
GTX 480 GTX 680 GTX 780 GTX 980 Titan X1

PCIe 12v power line 46,66 W 29,96 W 31,88 W 30,61 W 33,27 W
PCIe 3,3v power line 1,26 W 1,63 W 2,19 W 1,86 W 2,54 W
Ext. 12v 6-pin back 71,42 W 41,32 W 55,89 W 35,15 W 81,71 W
Ext. 12v 6-pin front 37,07 W 27,55 W 35,22 W 30,75 W 37,23 W
Average power 165,22 W 100,48 W 130,45 W 102,48 W 161,51 W
Elapsed time (secs.) 20,94 s 26,47 s 19,16 s 8,47 s 5,89 s
Energy spent (Jules) 3459,96 J 2660,14 J 2500,42 J 868,18 J 952,61 J
Time reduction vs. GTX 480 -26,42% 8,48% 59,55% 71,84%
Energy reduction vs. GTX 480 23,12% 27,74% 74,91% 72,47%

For Q-norm, we have found the input/output time to be as much as 3-4
times the execution time. Fortunately, this excessive time will soon be de-
creased using the new Solid State Disks (SSD) and the NVlink bus developed
by Nvidia to replace PCI-express on newer GPUs.

5.4. Performance per watt analysis on bedpostx

We decompose the GPU contribution for bedpost into four kernels: PVM m

(responsible for around 2-5% of the execution time - see results in Table 7),
PVM s (1-2%, Table 8), fibres (negligible, Table 9), and runmcmc(the bulk
of the GPU computation time with 20% - see results in Table 10).

5.4.1. Average power

The first thing we discuss is the average power, which keeps consistent
across kernels, with a little increment in the last two GPUs, close to 130 W
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Table 8: Power measurements and execution times for the Fit PVM single kernel (alias
PVM s) within FDT.

CUDA kernel: Fit PVM single (alias PVM s)
GTX 480 GTX 680 GTX 780 GTX 980 Titan X1

PCIe 12v power line 46,66 W 29,96 W 31,94 W 28,88 W 27,96 W
PCIe 3,3v power line 1,26 W 1,63 W 2,19 W 1,86 W 2,54 W
Ext. 12v 6-pin back 69,72 W 41,32 W 56,11 W 32,87 W 72,33 W
Ext. 12v 6-pin front 35,97 W 27,55 W 35,47 W 29,82 W 36,23 W
Total average power 162,13 W 100,48 W 131,03 W 99,90 W 147,25 W
Elapsed time 11,06 s 12,42 s 9,51 s 5,51 s 4,40 s
Energy spent 1794,65 J 1252,37 J 1247,19 J 550,78 J 648,52 J
Time reduction vs. GTX 480 -12,22% 14,02% 50,20% 60,22%
Energy reduction vs. GTX 480 30,22% 30,51% 69,31% 63,87%

Table 9: Power measurements and execution times for the Init fibres multifibres

kernel (alias fibres) within FDT.

CUDA kernel: Init fibres multifibres (alias Fibres)
GTX 480 GTX 680 GTX 780 GTX 980 Titan X1

PCIe 12v power line 51,18 W 33,65 W 30,16 W 24,83 W 28,07 W
PCIe 3,3v power line 1,27 W 1,63 W 2,19 W 1,86 W 2,53 W
Ext. 12v 6-pin back 42,25 W 36,11 W 51,63 W 45,38 W 88,54 W
Ext. 12v 6-pin front 77,28 W 24,09 W 31,68 W 36,07 W 48,91 W
Total average power 181,80 W 95,50 W 120,54 W 112,87 W 177,20 W
Elapsed time 0,0138 s 0,0200 0,0158 0,0136 0,0092
Energy spent 2,50 J 1,91 1,90 1,53 1,63
Time reduction vs. GTX 480 -44,93% -14,49% 1,45% 33,34%
Energy reduction vs. GTX 480 23,87% 24,09% 38,82% 35,03%

Table 10: Power measurements and execution times for the Runmcmc kernel within FDT.

CUDA kernel: Runmcmc
GTX 480 GTX 680 GTX 780 GTX 980 Titan X1

PCIe 12v power line 53,46 W 38,10 W 34,48 W 38,92 W 40,88 W
PCIe 3,3v power line 1,26 W 1,62 W 2,18 W 1,85 W 2,53 W
Ext. 12v 6-pin back 44,25 W 52,85 W 62,50 W 44,28 W 99,42 W
Ext. 12v 6-pin front 83,87 W 34,92 W 42,29 W 38,68 W 45,58 W
Total average power 193,29 W 127,51 W 148,20 W 128,80 W 197,11 W
Elapsed time 46,77 s 66,37 s 46,62 s 40,57 s 28,25 s
Energy spent 9041,90 J 8463,63 J 6909,31 J 5225,85 J 5570,11 J
Time reduction vs. GTX 480 -41,90% 0,40% 13,27% 39,59%
Energy reduction vs. GTX 480 6,40% 23,59% 42,21% 38,40%
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and 200 W in the last kernel. Note, however, that this is far from dangerous
values, established by the manufacturer as the Thermal Design Power (165
W and 250 W, respectively - see Table 2). The PCI slot has a power limit of
70W, which is never surpassed, and, in fact, newer models use less extensively,
overloading more the external lines (6-pin connector directly from PSU).

Average power remains stable in the first two kernels, which have similar
arithmetic intensity, and goes up for the last two, particularly runmcmc, that
computes a Markow Chain Monte Carlo process and is the only one doubling
the number of iterations (64 versus 32 in the other three kernels). That
way, runmcmc improves data locality and doubles arithmetic intensity. Even
though operations are not demanding in energy budget (see Table 4), they are
extremely fast (particularly those required by Monte Carlo), and therefore,
energy compresses in short periods of time, increasing the average. When
GPU takes most of the time communicating, the energy budget increases,
but because data takes longer to traverse the chip, watts per second are not
that demanding and average power may eventually relax.

5.4.2. Power by generations

Average power is quite unstable across GPU generations. We start with
the highest values in the older GPU, the GTX 480, as a consequence of its
impressive frequency, 1.40 GHz, and 40 nm. transistors. All remaining GPUs
analized in this section are manufactured with 28 nm. transistors, which cuts
the energy budget by as much as 30% on every similar operation. Average
power values in Titan X1 are disappointing, and can be justified only from
the optimistic perspective of its high speed-up factors: This GPU manages
to reduce both time and energy around 40% on the heavier kernel, which is
not bad at all for a five year period. We now enter into more details about
time and energy.

5.4.3. Speed-up factors

We compile acceleration factors for FDT and all GPU models in Table
11. The only disappointing result stands for the GTX 680, which is hard
to explain. Versus GTX 480, the frequency relaxes 30%, but the number of
cores increase by a 3.2x factor, and cores occupancy ratios keep high for the
most demanding kernel, runmcmc. Honestly, we do not find an explanation
for this. On the optimistic side, we have the Titan X1, responsible for an
acceleration of 2,04x versus GTX 480 and 2,72x versus GTX 680, with a
peak acceleration factor of 4,48x for the PVM m kernel (see Table 12). The
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Table 11: Average power, execution time and kernel percentage for every GPU and FDT
kernel analyzed.

PVM m PVM s Fibres Runmcmc Total

GTX Power 165,22 W 162,13 W 181,80 W 193,29 W 186,81 W
480 Time 20,94 s 11,06 s 0,01 s 46,77 s 78,78 s

% kernel 3,87 % 1,70 % 0,00 % 19,40 % 24,97 %

GTX Power 100,48 W 100,48 W 95,50 W 127,51 W 120,31 W
680 Time 26,47 s 12,42 s 0,02 s 66,37 s 105,29 s

% kernel 4,62 % 2,00 % 0,00 % 18,25 % 24,87 %

GTX Power 130,45 W 131,03 W 120,54 W 148,20 W 144,59 W
780 Time 19,16 s 9,51 s 0,01 s 46,62 s 75,33 s

% kernel 3,65 % 1,47 % 0,00 % 19,87 % 24,99 %

GTX Power 102,48 W 99,90 W 112,87 W 128,80 W 124,32 W
980 Time 8,47 s 5,51 s 0,01 s 40,57 s 54,57 s

% kernel 2,07 % 0,90 % 0,25 % 21,97 % 25,19 %

Titan Power 161,51 W 147,25 W 177,20 W 197,11 W 185,37 W
X1 Time 5,89 s 4,40 s 0,00 s 28,25 s 38,57 s

% kernel 2,10 % 0,92 % 0,00 % 21,97 % 24,99 %

maximum speed-up for remaining kernels is also attained on the Titan X1
vs. GTX 680 comparison: 2,82x for PVM m, 2,17x for Fibres, 2,34x Runmcmc

and 2,72x in total (on average).
Overall, the evolution of GPUs is satisfactory along these years, because

we benefit from all these accelerations for free. That is, without being re-
quired to tune our kernels to exploit any of the new CUDA Compute Capa-
bilities (CCC - we start with a CCC 2.0 model and end with a 5.2 model).
Making use of GPU Boost (introduced in CCC 3.0), Dynamic Parallelism
and/or Hyper-Q (CCC 3.5) or Unified Memory (CCC 5.0) we would have
pushed forward speed-up factors (but it remains to be seen the cost in pro-
gramming effort).

5.4.4. Energy efficiency

Table 13 summarizes power, time and energy on its main diagonal (higher
values are bad news), and leaves remaining cells to establish a final compar-
ison across GPUs (with higher values being good news this time). Values
below the diagonal are expected to be better than those above, because they
compare a newer/better GPU versus and older/worse counterpart.

Reading the table vertically on the lower triangle, we are witnesses of
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Table 12: Acceleration factors for every FDT kernel and overall.

CUDA kernel PVM m PVM s Fibres Runmcmc Total

Kernel weight (approx.) 3% 1,75% 0,25% 20,00% 25,00 %

GTX 680 vs. GTX 480 0,79x 0,89x 0,69x 0,70x 0,74x
GTX 780 vs. GTX 480 1,09x 1,16x 0,87x 1,00x 1,04x
GTX 980 vs. GTX 480 2,47x 2,00x 1,01x 1,15x 1,44x
Titan X1 vs. GTX 480 3,55x 2,51x 1,50x 1,65x 2,04x

GTX 780 vs. GTX 680 1,38x 1,30x 1,26x 1,42x 1,39x
GTX 980 vs. GTX 680 3,12x 2,25x 1,47x 1,63x 1,92x
Titan X1 vs. GTX 680 4,48x 2,82x 2,17x 2,34x 2,72x

GXT 980 vs. GTX 780 2,26x 1,72x 1,16x 1,14x 1,38x
Titan X1 vs. GTX 780 3,24x 2,16x 1,71x 1,64x 1,95x

Titan X1 vs. GTX 980 1,43x 1,25x 1,47x 1,43x 1,41x

scalability on GPU technology, a feature GPUs are famous for (higher speed-
ups on lower rows, with a peak of 2,73x). However, the power for Titan X1
(185,37 W) is not that competitive, particularly when compared to the GTX
980 (124,32 W), which becomes the most energy efficient GPU with a peak
of 2,30x versus GTX 480. That is the toll to pay for having 50% more cores
activated (3072 versus 2048 for the same generation and architectural model).

With a total of 6784,14 jules spent to complete our entire FDT applica-
tion, and on an average fare of 0,13e/kWh, the GTX 980 spends 0,245e ver-
sus 0,563e required by the GTX 480. Remember that GTX 480 is the only
GPU manufactured on a 40 nm. process (remaining four are at 28 nm.
process), and also abuses of frequency (1.4 GHz), which has dramatic conse-
quences on the performance per watt ratio.

Now reading the table horizontally, we can conclude that acceleration
attained and energy spent correlate quite well, particularly within all 28 nm.
GPUs (Kepler and Maxwell generations). (higher speed-up factors are more
energy demanding). For example, when Titan X1 accelerates 2,04x on the
lower left corner, consumes 2,19x less energy. But if we reduce the speed-up
to 1,41x (lower right corner), there is an energy deficit around 5%.

5.5. Performance per watt analysis on multi-tensor tractography

We now analyze the modelling of diffusion images through our determin-
istic approach. Tensors extract enhanced information about the diffusion
process inside a voxel, which allow us to compute a wide range of popular
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Table 13: Main diagonal: Power, time and energy spent for every GPU running FDT
(note that in all cases, higher values are worse). Remaining cells are comparison factors
in the same order (but this time, higher values are good news). For example, Titan X1
is 1,01x, 2,04x and 2,19x better in power, time and energy versus GTX 480, respectively
(see last triplet of rows, first column).

GTX 480 GTX 680 GTX 780 GTX 980 Titan X1
186,81 W 0,65x 0,76x 0,67x 0,99x

GTX 480 78,78 s 1,37x 0,95x 0,70x 0,49x
15662,25 J 0,80x 0,69x 0,43x 0,46x

1,55x 120,31 W 1,20x 1,03x 1,54x
GTX 680 0,73x 105,29 s 0,71x 0,52x 0,37

1,24x 12667,43 J 0,87x 0,54x 0,56x
1,29x 0,83 144,59 W 0,86x 1,28x

GTX 780 1,05x 1,40x 75,33 s 0,72x 0,51x
1,44x 1,16x 10891,96 J 0,62x 0,66x
1,50x 0,97x 1,16x 124,32 W 1,49x

GTX 980 1,44x 1,93x 1,38x 54,57 s 0,71x
2,30x 1,86x 1,61x 6784,14 J 1,05x
1,01x 0,65x 0,78x 0,67x 185,37 W

Titan X1 2,04x 2,73x 1,95x 1,41x 38,57 s
2,19x 1,77x 1,52x 0,95x 7149,72 J
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Figure 11: Watts spent for each power line and kernel involved in our multitensor trac-
tography.
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Table 14: Power measurements and execution times for the estimate tensors kernel using
one tensor.

CUDA kernel: estimate tensors (1 tensor)

Titan X1 Titan X2 Difference

PCIe 12v power line 9,26 W 14,73 W +5,47 W (+59,07%)
PCIe 3.3v power line 11,55 W 13,71 W +2,16 W (+18,70%)
Ext. 12v 6-pin back 47,70 W 64,99 W +17,29 W (+36,24%)
Ext. 12v 6-pin front 57,47 W 63,67 W +6,20 W (+10,78%)

Total average power 129,59 W 157,30 W +27,71 W (+21,38%)

Elapsed time 106,68 s 88,98 s -17,70 s (-16,59%)

Energy spent 13823,62 J 13996,35 J +172,73 J (+1,25%)

Table 15: Power, time and energy elapsed for the estimate tensors kernel using three
tensors.

CUDA kernel: estimate tensors (3 tensors)

Titan X1 Titan X2 Difference

PCIe 12v power line 8,74 W 13,03 W +4,29 W (+49,08%)
PCIe 3.3v power line 10,92 W 12,14 W +1,22 W (+11,17%)
Ext. 12v 6-pin back 44,23 W 58,80 W +14,57 W (+32,94%)
Ext. 12v 6-pin front 58,26 W 57,51 W -0,75 W (-1,29%)

Total average power 121,09 W 141,54 W +20,45 W (+20,45%)

Elapsed time 562,79 s 308,58 s -254,21 s (-45,16%)

Energy spent 68150,68 J 43677,33 J -24473,35 J (-35,91%)

neuroimaging biomarkers.
Tables 14, 15 and 16 gather power, time and energy spent on each of the

three kernels involved for this method, and Figure 11 compares kernels for
each power line. The first thing we appreciate is a different way of distributing
power through PCIe and external lines. The probabilistic method, bedpostx,
takes around 40 W from the PCIe 12v line on the Titan X1 GPU, whereas
the deterministic formulation, let us call it (multitensor, keeps this value
consistently below the 10 W threshold. With the PCIe 3,3v line, we see the
opposite effect: around 2.5 W for bedpostx and 10 W for multitensor. For
the pair of external lines, bedpostx takes much more power from the back
line (100 W vs. 45 W), whereas multitensor relies slightly more on the
front line (45 W vs. 57 W).

Table 17 summarizes the comparison between bedpostx and multitensor
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Table 16: Power measurements and execution times for the tractography kernel.

CUDA kernel: tractography

GPU Titan X1 Titan X2 Difference

PCIe 12v power line 7,95 W 12,22 W +4,27 W (+53,71%)
PCIe 3.3v power line 9,95 W 11,39 W +1,44 W (+14,47%)
Ext. 12V 6-pin back 41,08 W 50,36 W +9,28 W (+22,59%)
Ext. 12V 6-pin front 54,12 W 56,27 W +2,15 W (+3,97%)

Total average power 113,33 W 130,96 W +17,63 W (+15,55%)

Elapsed time 203,00 s 155,36 s -47,64 s (-23,46%)

Energy spent 23006,87 J 20347,15 J -2659,72 J (-11,56%)

Table 17: Comparing power, execution time and energy spent on the Titan X1 GPU for
the probabilistic and deterministic approaches within modelling of diffusion images.

Probabilistic Deterministic Difference
Total power 185,37 W 120,32 W 0,65x
Total time 38,57 s 872,46 s 22,62x
Total energy 7149,42 J 104976,38 J 14,68x
Energy cost 0,00026 e 0,0038 e 14,68x
% GPU was used 24,99% 5,31% 0,21x

for power, time and energy spent on the Titan X1 GPU. Average power is
much lower on the latter, but time elapsed and energy spent are 22 and 14
times larger, respectively. It is logical to find more relaxed values for power
on a process which takes much longer. Moreover, our deterministic approach
perform more calculations on a similar data set, and arithmetic intensity goes
up. GPUs are processors that consume much more power when fetching data
than computing on them (see Table 4), so we see how power goes down on
average and the energy factor is not as high as the speed-up. We also consider
that chip temperature is not that dramatic on the multitensorside to end
up on a better aging process for the hardware over time, but at the expense
of a higher energy cost.

Finally, Table 18 shows the contribution of the new Pascal GPU to speed-
up multitensor, our slowest method, and the energy costs associated. Ac-
celeration factors vary from 1,2x to 1,8x depending on the kernel, and energy
costs correlate well with speed-up factors. That way, the best scenario is of-
fered by the 3 tensors kernel (maximum speed-up and energy savings - 1,8x
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Table 18: Average power, execution time and energy spent on every kernel within the
multitensor tractography algorithm. Values are shown for the Titan X1 GPU, Titan X2,
and a comparison of both.

1 tensor 3 tensor tractography TOTAL

Power 129,59 W 121,09 W 113,33 W 120,32 W
Titan Time 106,67 s 562,78 s 203,00 s 872,46 s
X1 Energy 13823,36 J 68147,03 J 23005,99 J 104976,38 J

% kernel 0,65% 3,43% 1,24% 5,31%

Power 157,30 W 141,54 W 130,96 W 141,10 W
Titan Time 88,98 s 308,57 s 155,36 s 552,92 s
X2 Energy 13996,55 J 43674,99 J 20345,94 J 78017,48 J

% kernel 0,55% 1,92% 0,96% 3,43%

Titan Power 0,82x 0,85x 0,86x 0,85x
X2 Time 1,20x 1,80x 1,31x 1,58x
gain Energy 0,98x 1,63x 1,13x 1,34x

Titan X2 scoring vs. X1: Worst Best Intermediate

and 1,63x), followed by the tractography kernel (1,31x and 1,13x) and the
one tensor kernel (1,2x and 0,98x) The final row in the table summarizes this
analysis. Overall, the Titan X Pascal GPU is able to reduce average power
by 15%, time by 58% and energy by 34% versus the Titan X Maxwell, which
is the similar GPU model of the previous GPU generation.

6. Conclusions

This paper explores a wide set of biomedical methods from a HPC and
power-efficiency perspective, providing a variety of scenarios where GPUs
are able to accelerate applications at different ranges without hurting power
consumption. Even more, we have demonstrated that speep-up factors and
energy savings correlate quite well, mainly due to the following reasons:

1. Average power usually goes up whenever time shortens, but the time
reduction uses to be wider than the average increase.

2. Higher speed-up factors correspond to newer technology, where man-
ufacturing process (transistor gate width) shrinks, thus providing us
more power-efficient hardware over time.

3. GPUs do not abuse of frequency in latest generations. They try to keep
it relaxed, thus influencing power consumption in a very positive way.
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4. Horsepower in GPUs relies much more on number of cores provided
by more recent GPU models, where the risk for energy penalties come
only from larger communications within the chip. However, Nvidia
architectures managed to increase the core count through a greater
number of multiprocessors endowed with fewer cores. In CUDA, most
of the communications are internal to each multiprocessor, and that
way, paths to communicate data are shorter on every newer generation.
With that recipe in mind, you can increase GPU throughput and save
energy at the same time, as our work has extensively proven.

For the set of GPUs involved in our study, Kepler designs include multi-
processors of 192 cores, Maxwell ones reduce this amount to 128, and Pascal
shorten to 64. If we keep frequency on similar ranges and benefit from tran-
sistor shrinks, speed-up factors and energy savings can be attained both at
a time. For example, the Titan X Pascal GPU was able to reduce time by
58% and energy by 34% versus the counterpart Maxwell model when run-
ning one of our biomedical methods. We expect those benefits to increase on
the already announced Volta generation by Nvidia, where number of cores
increase from 3584 to 5120, frequency relaxes from 1480 to 1455 MHz and
transistors shrink from 16 to 12 nm.

Additionally, the set of experimental results we have gathered along this
paper suggest that data locality and arithmetic intensity represent the most
rewarding ways to accelerate applications when energy is a major concern.
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