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Abstract
Formal concept analysis is a data analysis framework based on lattice theory. In this paper, we analyse the use, inside this 
framework, of positive and negative (mixed) attributes of a dataset, which has proved to represent more information on the use 
of just positive attributes. From a theoretical point of view, in this paper we show the structure and the relationships between 
minimal generators of the simple and mixed concept lattices. From a practical point of view, the obtained theoretical results 
allow us to ensure a greater granularity in the retrieved information. Furthermore, due to the relationship between FCA and 
Knowledge Space theory, on a practical level, we analyse the marks of a Mathematics course to establish the knowledge 
structure of the course and determine the key items providing new relevant information that is not evident without the use 
of the proposed tools.
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1 Introduction

We are living in the information era, where almost all data 
are digitised. Many different techniques of data mining, 
machine learning and artificial intelligence can be applied to 
extract useful information in many different contexts. Educa‑
tion is one of such contexts, where the intelligent analysis of 
this information, applied to academic activities, has led to 
the emergence of what is known as Educational Data Mining 
(EDM) [1]. Currently, many approaches have shown the ben‑
efits of knowledge extraction techniques to forecast student’s 
performance [2], forecast student dropout [3], or recommend 

educational activities [4], among others. Roughly speaking, 
the advantage of using computational learning techniques 
to study these problems is that they can now rely on large 
amounts of data and will therefore be able to extract rel‑
evant knowledge about the patterns of students’ academic 
behaviour in a wide variety of situations. This knowledge 
extraction allows determining different strategies to improve 
the academic success of students.

Mainly, the artificial intelligence techniques that have 
been applied in Educational Data Mining belong to the 
class of supervised machine learning [5]. The most popular 
techniques have been deep neural networks (deep learning) 
[6] and decision trees (random forests) [7], although other 
methods have also been applied satisfactorily, including con‑
tinuous and logistic regression [8], support vector machines 
[9], association rules [10] or evolutionary algorithms [11].

We will use formal concept analysis (FCA) [12] as our 
tool to extract knowledge from a dataset with data about 
results in a mathematics course of students. Specifically, we 
propose the use of FCA to model the knowledge structure 
of an academic course and the dependencies among the dif‑
ferent units.

Knowledge Space Theory (KST) [13] proposes the evalu‑
ation of a person’s knowledge status with respect to a given 
knowledge domain. The reference knowledge domain is a 
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set of questions or items to be solved in a course and the 
knowledge state is the set of items the person is able to solve. 
The links between KST and FCA and how to explore KST 
in terms of FCA are shown in [14], concretely, these authors 
said “the FCA community developed a bundle of remark‑
ably fast algorithms which could be exploited” in the field 
of Technology‑Enhanced Learning.

Classical FCA extracts knowledge from a binary dataset, 
which relates objects and attributes, i.e., if in the dataset, 
in row i, column j we have a one or a cross, this means 
that Oi is related with Aj . FCA uses in the general approach 
the positive information in the dataset, i.e., the ones in the 
binary relation.

Our proposal extends this standard approach in FCA by 
incorporating mixed attributes, that is, considering positive 
and negative information in the same framework. If in the 
dataset, in row k, column l we do not have a one or a cross, 
this means that Ok is not related with Al . This information 
is overlooked by the classical approach but we use it in our 
framework. In the educational context, this means that we 
use information about passed and failed exams, not only 
about failed ones, which is the framework established in 
[15]. Thus, the objective is to identify patterns, seen as rela‑
tionships between course units, representing relevant hidden 
knowledge.

In addition, FCA facilitates acquiring a formal logic 
system based on implications that determine dependencies 
in the dataset. Therefore, FCA becomes a suitable tool to 
formally reason with attributes related to the acquisition of 
concepts, skills and competencies, as well as for the study 
of academic performance and the knowledge structure of 
a course, as proposed in the present work. FCA has been 
recently used to cluster students according to their aca‑
demic behaviour to guide them in their academic path [16] 
or to build a decision support system capable of identifying 
students at risk of dropping out in Massive Online Open 
Courses (MOOCs) [17].

One of the advantages of using a logical approach to this 
problem is the possibility of explaining and interpreting the 
results obtained and, more importantly, the model built. The 
methods mentioned above in Educational Data Mining, such 
as neural networks or random forests, are based on the iter‑
ated application of statistical techniques and, in some cases, 
are black boxes, where the model built is not interpretable 
by the user in a simple way. With FCA, interpretability 
and explainability are guaranteed because the knowledge 
is expressed in the form of logical rules, which allow for 
traceability.

From a theoretical point of view, our contributions to this 
work are related to mixed formal contexts. Specifically, we 
establish a relation between the concept lattice of the mixed 
context and the concept lattices which only consider sepa‑
rately positive or negative information. To extract a more 

granular knowledge of the mixed context, we will compute 
the minimal generators [18] of all closed sets from the set of 
implications computed using FCA.

Minimal generators [19] play a major role in different 
areas such as databases, graph theory, data mining, etc.

We emphasize that in the theoretical framework, the crisp 
background presented in [18], about minimal generators, is 
extended to the mixed paradigm in this paper. Relationships 
between the minimal generators considering mixed contexts 
with respect to the minimal generators in positive and nega‑
tive contexts are presented here. These relationships prove 
that more knowledge can be retrieved than by analysing indi‑
vidual contexts separately.

As mentioned above, to put the proposed theoretical 
framework into practice, we have applied it to the specific 
case of a high school Mathematics course in Spain. From 
a binary relation with the results of students in a set of rel‑
evant items in the course, we extract the implications using 
FCA techniques [20] and, all the minimal generators and 
their closed sets using Simplification Logic [21]. Regarding 
Simplification Logic, it is the reasoning tool that we use to 
draw conclusions from the relationship between the data, 
remove redundancy in the implications [22], and compute 
the minimal generators [18]. In our case study, we show the 
use of the minimal generators as a means of extracting the 
core items in the course, as well as answering the question 
“Is it possible for a student that has failed a certain number 
of units to pass the course?”.

The paper is structured as follows. In Sect. 2, we present 
the basic notions needed for readers from different back‑
grounds to fully understand the content of the article. Later, 
in Sect. 3 we present the technical details of our proposal 
and the main theoretical contributions. In Sect. 4, the case 
study is presented, and an in‑depth analysis is performed 
using the mentioned tools. The conclusions of this work 
and the proposal for future research directions are given in 
Sect. 5.

2  Background

In this section, we present the basic notions of formal con‑
cept analysis and Simplification Logic, which are used to 
find the minimal generators of the knowledge space.

2.1  Formal Concept Analysis

Formal concept analysis (FCA) is a helpful tool to extract 
knowledge from a dataset (called formal context). The for‑
mal context is defined as a three‑tuple � = (G,M, I) where 
G is a set of objects, M is a set of attributes, and I is a rela‑
tion between G and M (called incidence) with the follow‑
ing interpretation: if the pair (g,m) ∈ I then we say that the 
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object g has the attribute m. The incidence relation is usually 
represented by a table where the rows are objects; the col‑
umns are attributes. When we find a cross in a cell, we have 
that the object related to the row has the attribute related to 
the column.

FCA is closely related to Galois connections, which are 
two maps � ∶ P → Q and � ∶ Q → P between two ordered 
sets (P,≤) and (Q,≤) satisfying: 

(1) � is antitone, i.e., p1 ≤ p2 then �(p1) ≥ �(p2);
(2) � is antitone, i.e., q1 ≤ q2 then �(q1) ≥ �(q2);
(3) for all p ∈ P and q ∈ Q we have that: 

Given a formal context � = (G,M, I) , we can define 
a Galois Connection between the set of attributes and 
objects as follows. The first map, ↑ ∶ 2G → 2M is defined 
as A↑ = {m ∈ M ∣ (g,m) ∈ I ∀g ∈ A} . That is, given a 
set of objects A ⊆ G , A↑ is the a set of all the attributes 
shared for all the objects in A. The second map of the Galois 
Connection, denoted by ↓ , is defined as ↓ ∶ 2M → 2G with 
B↓ = {g ∈ G ∣ (g,m) ∈ I ∀m ∈ B} . In other words, given 
a set of attributes B ⊆ M , B↓ is the set of all the objects that 
have all the attributes in B. The pair (↑, ↓) forms a Galois 
Connection [12, 20]. Hence, the compositions ↑◦↓ and ↓◦↑ are 
closure operators. For the sake of the presentation, hereafter, 
we omit the symbol ◦ to denote such a composition; i.e., 
we write ↑↓ and ↓↑ , respectively. A set C is said to be closed 
under the Galois connection (↑, ↓) if C↑↓ = C.

Once the mappings ↑ and ↓ have been introduced, we 
can define the notion of formal concept, which is a pair 
(A,B) ⊆ G ×M , such that A↑ = B and B↓ = A . The subset A 
is said to be the extent of the formal concept and B is said to 
be the intent of the formal concept. Given a formal concept 
(A, B), all the objects in A share all the attributes in B and 
do not share any other attributes. Moreover, we can define 
an order relation between formal concepts, given two formal 
concepts (A, B) and (C, D), we say that (A,B) ≤ (C,D) if and 
only if A ⊆ C (or equivalently, if and only if D ⊆ B ). Indeed, 
this order relation defines a structure of complete lattice in 
the set of formal contexts, where the supremum and infimum 
are given by:

for any family of formal concepts {(Aj,Bj) ∶ j ∈ J} . The 
complete lattice defined by this order is called the Concept 
Lattice of the formal context � = (G,M, I) and we denote it 
by �(�) . In addition, it can be proved that every complete 

p ≤ �(q) ⟺ q ≤ �(p).

sup
j∈J

(Aj,Bj) =
(

(
⋃

j∈J
Aj)↑↓,

⋂

j∈J
Bj

)

inf
j∈J

(Aj,Bj) =
(

⋂

j∈J
Aj, (

⋃

j∈J
Bj)↓↑

)

lattice L can be seen as a concept lattice of a certain formal 
context [23, Chapters 3 and 7].

Throughout the paper, we will use the term formal con‑
cept for pairs (A,B) ⊆ G ×M , as well as for subsets of attrib‑
utes which are closed under the Galois connection ↓↑ , that is, 
we identify formal concepts with their intents.

2.2  Simplification Logic and Minimal Generators

One crucial advantage of FCA is that the implications aris‑
ing from a formal context � = (G,M, I) can be treated using 
formal logic. Consequently, we may say that FCA provides a 
suitable mathematical background to express, represent, rea‑
son, deduce and explain the pieces of knowledge extracted 
from a dataset.

Let us begin by describing the syntax and semantics of 
the logic that models the dependencies between attributes in 
a formal context � = (G,M, I) . Syntactically, given two sets 
of attributes A,B ⊆ M , we define an implication “A implies 
B” and denote it by A → B . Semantically, we say that an 
implication A → B is true if all objects with all the attrib‑
utes in A have all the attributes in B. Formally, we say that 
an implication A → B is valid in a context � if and only if 
B ⊆ A↓↑ , which is equivalent to A↓ ⊆ B↓. Moreover, we say 
that a context � is a model of a set of implications Σ if every 
implication in Σ is valid in �.

The benefit of using a logic system to represent depend‑
encies between attributes is that we can perform (syntactic) 
inferences and define logical consequences. Accordingly, we 
say that a formula A → B is a logical consequence of a set 
of implications Σ (denoted Σ ⊧ A → B ) if every model of 
Σ is also a model of A → B . In other words, logical conse‑
quences are implications that must be true if we assume a set 
of valid implications. Hence, and thanks to formal logic, we 
may differentiate between correct conclusions (i.e., logical 
consequences) and fallacious conclusions.

The (syntactic) inferences require the use of axioms and 
inference rules. It is well known that we can manage this 
kind of implications through Armstrong’s Axioms [24]. In 
this paper, we consider the Simplification Logic instead, this 
logic is equivalent to Armstrong’s axioms but it is more 
appropriate for designing automatic reasoning methods [21]. 
Simplification Logic considers “Inclusion” as an axiom

[Inc] Inclusion1: ⊢S AB → A.

and three inference rules called “fragmentation”, “composi-
tion” and “simplification”, respectively:

1 Note that the union symbol is omitted in the axiom and inference 
rules, in this respect and as an example, the formula AB → A means 
(A ∪ B) → A.
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[Frag] Fragmentation: A → BC ⊢S A → B.
[Comp] Composition: A → B,C → D ⊢S AC → BD.
[Simp] Simplification: A → B,C → D ⊢S A(C − B) → D.

The Simplification Logic is sound and complete; i.e., given 
a set of implications Σ , any inferred implication is a logical 
consequence of Σ . Conversely, any logical consequence of Σ 
can be deduced through the Simplification Logic. It is worth 
mentioning that syntactic inferences allow obtaining logi‑
cal consequences much more straightforward than applying 
definition. Therefore, Simplification Logic is a powerful tool 
for the performance of correct deductions.

Another point that supports the use of the previously 
described logic is that we can represent the knowledge in a 
context through a set of implications, which is much easier 
to interpret. That is, given a context � = (G,M, I) , we aim 
at determining a set of implications Σ such that (1) � is a 
model of Σ and (2) for all implication A → B valid in � , 
we have that Σ ⊢S A → B . A set of implications satisfying 
these properties is called complete. Hereinafter, every set of 
implications is assumed to be complete.

Given a set of implications Σ and a set of attributes 
A ⊆ M , we define the logical closure of A as the maximum 
(for the inclusion) set Y ⊆ A such that A → Y  holds, w.r.t. 
the implications using the Armstrong Axioms, or equiva‑
lently Simplification Logic. A+

Σ
 denotes this set. See [21] for 

an efficient method using Simplification Logic to compute 
the closure of a set of attributes. Given a complete set of 
implications Σ and due to the Simplification Logic being 
sound and complete, the respective logical closure operator 
induced by Σ coincides with the closure operator of FCA, 
i.e. for any A ⊆ M , we have A+

Σ
= A↓↑ . Therefore, we can use 

either Simplification Logic or FCA derivation operators to 
compute the same closure.

Then, given a closed set of attributes A ⊆ M , we say that 
C ⊆ M is a minimal generator of A if

• C+
Σ
= A and

• if D+
Σ
= A for certain D ⊆ C , then D = C.

Therefore, given a context � = (G,M, I) , a minimal genera‑
tor of M determines a minimal set of attributes from which 
we can infer the rest in M. In other words, minimal genera‑
tors compress all the knowledge into only a few attributes, 
and somehow, we may say that they are more valuable than 
the others. Note that this definition of minimal generator 
from the use of the logical closure associated with a set 
of implications is equivalent to using the concept‑forming 
operators from FCA, that is, C is a minimal generator of 
A ⊆ M if and only if, C↓↑ = A and for all D ⊆ C such that 
D↓↑ = A , then D = C.

Example 1 Let us consider the set of attr ibutes 
M = {a, b, c, d, e, f } and the following set of implications:

Then, it is easy to prove that both sets {a, b, d} and {a, b, e} 
are minimal generators of M (note that we may have dif‑
ferent minimal generators of the same set). In this respect, 
we can ensure that any object with the attributes a, b and 
d necessarily has also the rest of the attributes due to the 
dependencies given by Σ . To point out the importance of 
minimal generators, if we were in a context of employee 
selection and M were the attributes we are interested in, then 
we could just focus on the verification of the attributes a, b 
and d (respectively, a, b and e) of applicants since the rest 
are consequences of those.   ◻

2.3  Relationship Between FCA and Knowledge 
Space Theory

Knowledge Space Theory (KST) is based on the idea that the 
knowledge acquired by a group of persons about a specific 
discipline may be represented by a set of questions that they 
are capable of solving [15]. Accordingly, given a set of ques‑
tions Q and a subset K of 2Q (i.e., the powerset of Q), we say 
that the pair (Q,K) is a knowledge space if

[KST1] Q ∈ K and ∅ ∈ K;
[KST2] K is closed under union.

Each element in K is called knowledge state. Roughly speak‑
ing, each knowledge state represents the knowledge acquired 
by a subgroup of people. The condition [KST1] states that 
the full and null knowledge of a discipline must be knowl‑
edge states. On the other hand, [KST2] states that if two 
groups of people are capable of solving questions of two 
knowledge states K1 and K2 , then the join of both groups of 
people is capable of solving the questions in the knowledge 
states K1 ∪ K2.

Additionally, a knowledge space (Q,K) is called quasi 
ordinal if K is closed under intersection. Quasi ordinal 
knowledge spaces are motivated in [13] to become the ref‑
erence structure. They prove that if we can impose some 
dependencies among questions (in the sense, that if an 
individual answers question (a), then the individual can 
answer (b) as well), knowledge spaces have the structure of 
a lattice under the natural ordering in 2Q . In this line, [15] 
relates knowledge spaces and FCA by means of the notion of 
Knowledge Context, which is a formal context � = (P,Q, I) 
such that P is a set of students, Q is a set of questions/evalu‑
ations, and the relationship I is such that (p, q) ∈ I means 
that student p failed to solve problem q. The complements 

Σ =
{

{a, b} → {c};{a, d} → {e, f };{b, c, e} → {d, f }
}
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of the intents of the knowledge context (P, Q, I) form a 
knowledge space on Q, whose knowledge states represent 
the tested knowledge of the persons of P [15]. Reciprocally, 
given a knowledge space (Q,K) , one can easily define the 
context (K,Q,∌) that expresses all the knowledge states and 
is isomorphic to the knowledge context (P, Q, I).

This characterisation of knowledge spaces by means 
of formal contexts allows us to work with the FCA tech‑
niques to analyse and express the hidden structure of the 
knowledge. Then, FCA provides two main tools for mining 
knowledge: the concept lattice �(�) , which is isomorphic2 
to the associated knowledge space (Q,K) ; and the set of 
valid implications in the formal context which determines, 
in this case, the dependencies among questions. Notably, in 
[15], it is stated that an irredundant description of a quasi 
ordinal knowledge space is given by an implication basis of 
the corresponding knowledge context. Thus, by studying the 
implication bases, we could obtain deeper insight into the 
knowledge structure of a field.

3  Proposal

The aim of this section is to show that bases of implications 
and minimal generators in mixed contexts give more infor‑
mation than positive, or negative, contexts. This is due to 
the fact that mixed contexts provide a finer granularity than 
the classical ones. This section presents a set of theoretical 
results that support the statement above. Specifically, we 
prove that all the implications in the positive and negative 
contexts can be derived from the basis of implications of 
the mixed context, but the converse is not true, i.e., there 
are implications of the mixed context that cannot be derived 
from the implications in the positive or negative one; and 
likewise for minimal generators. To illustrate, from a practi‑
cal point of view, the advantages of retrieving information 
with mixed contexts, we will apply these results to a real‑life 
example in Sect. 4. Next, we introduce briefly the terminol‑
ogy of mixed contexts.

Classical FCA considers a binary relation in which if an 
object g is related to an attribute m, then the pair (g, m) 
appears in the relation (positive information). Taking the 
proposal a step further, we propose in this article the use of 
an FCA extension considering not only the positive informa‑
tion but also the negative one, that is, when an object is not 
related to an attribute. Recently some works have appeared 
in the literature that deal with positive and negative infor‑
mation [25]. To the best of our knowledge, none of them 

considers the computation of minimal generators taking into 
account positive and negative information in a dataset.

Our approach follows the line of [26], which uses 
positive and negative attributes. Given a formal context 
� = (G,M, I) , we define the set of negative attributes as 
M = {m ∣ m ∈ M} and construct a new formal context 
(� ∣ �) = (G,M ∪M, I∗) where the incidence relation I∗ is 
defined as:

• (g,m) ∈ I∗ if and only if (g,m) ∈ I for all m ∈ M and
• (g,m) ∈ I∗ if and only if (g,m) ∉ I for all m ∈ M.

Hence, the new incidence takes the opposite value to the 
value of m in the original incidence for all m ∈ M . Hereafter, 
we refer to � and � as the positive and the negative contexts, 
respectively.

However, this approach duplicates the number of col‑
umns in the context and, as a consequence, it increases the 
algorithmic and computational cost of working with the 
dataset. In this work, we follow the line in [26] of defining 
a new Galois connection over � that captures both the posi‑
tive and negative information without the need to duplicate 
the columns. The new connection is denoted by ⇑ and ⇓ to 
differentiate them from those of the original context � . In 
the rest of this paper, the context � equipped with the new 
Galois connection will be referred to as the mixed context. 
The new operators ⇑ ∶ 2G → 2M∪M and ⇓ ∶ 2M∪M → 2G are 
defined as follows:

Since these two operators form a Galois connection, their 
composition is a closure operator. Therefore, they induce a 
concept lattice over the mixed context of � . Let us denote 
by �#(�) the lattice formed by using the derivation opera‑
tors ⇑ and ⇓ , in contrast to the concept lattice �(�) built 
using the concept‑forming operators ↑ and ↓ . Note that with 
this definition of the new derivation operators, we have that 
�
#(�) = �(� ∣ �) . This means that handling positive and 

negative information is more efficient since there is no need 
to duplicate the number of columns in the context.

The following functions are introduced to capture the 
positive and negative information related to a given set of 
attributes A:

where A = {m ∈ M ∶ m ∈ A} ∪ {m ∈ M ∶ m ∈ A} , the set 
that transforms m to m and m to m for all m ∈ M.

X⇑ ={m ∈ M ∣ (g,m) ∈ I ∀ g ∈ X} ∪ {m ∈ M ∣ (g,m) ∉ I ∀ g ∈ X}

Y⇓ ={g ∈ G ∣ (g,m) ∈ I ∀ m ∈ Y} ∩ {g ∈ G ∣ (g,m) ∉ I ∀ m ∈ Y}

Pos(A) =A ∩M

Neg(A) =A ∩M

2 Note that (Q,K) maybe not closed under intersection despite the 
lattice structure provided by �(�) , since the ordering of the latter 
may not coincide with the natural order in 2Q.
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The two mappings defined above, namely ⇑ and ⇓ , are 
related to the standard derivation operators ↑ and ↓ . This is 
illustrated in the following result.

Lemma 1 [26] For a formal context � and its complement3 
� , the following statements hold: 

1. If A ⊆ M , then A⇓ = A↓ (in �).
2. If A ⊆ M , then A⇓ = A↓ (in �).
3. If B ⊆ G , then Pos(B⇑) = B↑ (in � ) and Neg(B⇑) = B↑ 

(in �).

The example below is a running example which will illus‑
trate the results presented along the paper.

Example 2 Let us consider the formal context � in 
Table 1 (a). The apposition (concatenation by columns) of � 
and its complement � is in Table 1 (b). We follow the nota‑
tion � ∣ � for the concatenated formal context. In addition, 
we define M = {a, b, c, d} and M = {a, b, c, d}.

We have defined over � two Galois connections: (↑, ↓) and 
(⇑, ⇓) . We can show the different information they capture 
with a simple example:

In this case, we can check the results of Lemma 1, since 
{c, d}⇓ = {c, d}↓ = {o5} , that is, the operators ↓ and ⇓ 
coincide when they are applied to a set of positive attrib‑
utes. However, the operator ⇑ differs in general from ↑ , 
since, {o5}⇑ = {b, c, d, a} ≠ {b, c, d} = {o5}↑ . Despite 
this difference, they can be related by means of the 
operator Pos (see Lemma 1), that takes only the positive 
attributes to the result obtained by applying ⇑ . That is: 
Pos({o5}⇑) = Pos({b, c, d, a}) = {b, c, d} = {o5}↑.

{c, d}↓↑ =
(

{c, d}↓
)↑

= {o5}↑ = {b, c, d}

{c, d}⇓⇑ =
(

{c, d}⇓
)⇑

= {o5}⇑ = {b, c, d, a}

Notice also that ↓ is defined on 2M whereas ⇓ is in 2M∪M , 
so it does not make sense to write {c, b}↓ . Instead, we have 
to rely on ⇓ to compute the desired extent using mixed attrib‑
utes: {c, b}⇓ = {o4, o6} .   ◻

The use of mixed contexts, with positive and negative 
attributes, provides richer information than the one obtained 
by using a context where only one positive (or negative) 
attribute is considered. In the theoretical results that we 
show below, we can see how the use of mixed contexts 
extends the information obtained from simple contexts. Spe‑
cifically, we present a few properties that relate the closed 
sets, the lattice of concepts and the minimal generators of the 
mixed context with both simple contexts (i.e., both positive 
and negative). The work on mixed contexts was initiated in 
[26], where some interesting results concerning this frame‑
work were proved. The result below shows that the concept 
lattices of the positive (or negative) contexts are embedded 
in the mixed concept lattice. As a result, the mixed context 
gives, at least, as much information as the positive or nega‑
tive contexts.

Theorem  1  [26]  The  maps  �1 ∶ �
#(�) → �(�) , 

�2 ∶ �
#(�) → �(�) such that

are join‑preserving and surjective.

As a consequence, besides the isomorphism between the 
knowledge space (Q,K) and the concept lattice of the knowl-
edge context � = (P,Q, I) given by [15], we can say that the 
concept lattice of the knowledge context � is embedded in 
�
#(�) employing the �1 and �2 projection operators. Accord‑

ingly, we may consider more information using the positive 
and negative attributes, i.e., representing the two faces of the 
same phenomenon.

�1(X, Y) ∶=(Pos(Y)
⇓, Pos(Y))

�2(X, Y) ∶=(Neg(Y)
⇓

, Neg(Y))

Table 1  Formal contexts for the 
example

a b c d a b c d a b c d

o1 × × o1 × × × ×

o2 × × o2 × × × ×

o3 × × o3 × × × ×

o4 × o4 × × × ×

o5 × × × o5 × × × ×

o6 × × o6 × × × ×

o7 × × o7 × × × ×

(a) (b)

3 The complement of a formal context � = (G,M, I) is defined as 
� = (G,M, I) where I is defined by (g,m) ∈ I if and only if (g,m) ∉ I.
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Example 3 We continue with the same contexts from Exam‑
ple 2. In Fig. 1, we show the concept lattices of the positive 
( �(�) ), negative ( �(�) ) and mixed ( �#(�) ) formal contexts. 
We have used a color code to represent the relationships 
and embedding of �(�) and �(�) into �#(�) . The backpro‑
jection of the concepts in �(�) via �1 is in blue and gray, 
and the backprojection of �(�) via �2 is in orange and gray. 
Some of the concepts in �#(�) are in gray because they 
are the backprojections of both positive and negative con‑
cepts. Note that, although a concept belong to the positive 
concept lattice �(�) , it may be the projection of a concept 
with negative attributes in the mixed concept lattice �#(�) . 
For example, the concept {a, c} ∈ �(�) is the projection of 
{a, c, b, d} ∈ �

#(�) . As a result, we can assert that the mixed 
concept lattice contains those concepts of the other two con‑
texts and provide additional information and granularity. 
Actually, note that in Fig. 1, none of the concepts coloured 
in white in �#(�) can be obtained by considering only either 
positive or negative contexts.   ◻

At this point, we can consider applying Simplifica‑
tion Logic on the extended context � ∣ � as described in 
Sect. 2.2. However, in such a case, we do not capture the 
relationship between opposite attributes, since in � ∣ � the 
opposite attributes a and a are unrelated. That is a drawback. 
For such a reason, the following definition presents seman‑
tics on implications where positive and negative attributes 
are involved.

Definition 1 [26] Let � be a mixed formal context and let 
A → B with A,B ⊆ M ∪M be an implication. We say that 
A → B is valid in � (denoted by � ⊧ A → B ) if and only if 
B ⊆ A⇓⇑.

As mentioned above, this semantics allows us to estab‑
lish new relations between implications that do not appear 
in the standard logic presented in Sect. 2.2. In particular, 
the authors in [26] proposed an axiomatic system to cap‑
ture the relationship between opposite attributes, named 
Simplification Logic for Mixed Attributes, a sound and 
complete logic system for implications on mixed formal 
contexts.

[Ref] Reflexivity: ⊢S A → A.
[Simp] Simplification: A → B,C → D ⊢S A(C ∖ B) → D.
[Key] Key: A → {b} ⊢S A ∪

{

b
}

→ M ∪M.

[Inky] Inverse key: A ∪ {b} → M ∪M ⊢S A →

{

b
}

.
[Red] Reduction: A ∪ {b} → C,A ∪

{

b

}

→ C ⊢S A → C.

Besides, it is convenient to display the following inference 
rules obtained from the previous logic system since they 
will be used later to explain some results.

[Cont] Contradiction: ⊢S {a, a} → M ∪M.
[Rft] Reflection: A ∪ {a} → {b} ⊢S A ∪

{

b
}

→ {a}.
[Frag] Fragmentation: A → BC ⊢S A → B.
[Comp] Composition: A → B,C → D ⊢S AC → BD.

Let us briefly comment on the details of the specific rules 
of this logic, [Cont] and [Rft], since they are the ones 
showing the relationship between positive and negative 
attributes. The first inference rule, called Contradiction, 
is a form of the well‑known Ex contradictione quodlibet, 
i.e., we can infer all the attributes from a set of contradic‑
tory attributes. The second one, Reflection, is an infer‑
ence rule that allows us to interchange attributes from the 

Fig. 1  Concept lattices associated with a the positive context � in Table 1 (a); b the mixed context; c the negative formal context �
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antecedent to the consequent (and vice versa) simply by 
negating them.

Example 4 We now study the behaviour of Simplification 
Logic on the implications retrieved from the positive, nega‑
tive and mixed contexts of our running example started in 
Example 2.

On the one hand, the bases of implications for both simple 
formal contexts, � and � , in Example 2 are the following: 

For � For �

{c, d} → {b}
{

b, c, d
}

→
{

a
}

{a, b, d} → {c}
{

a, c, d
}

→
{

b
}

{a, b, c} → {d}
{

a, b
}

→
{

d
}

On the other hand, the basis of implications for the formal 
context � ∣ � in Table 1 (b) is:

These implications form a minimal set from which all other 
valid implications in the context � ∣ � can be deduced. How‑
ever, thanks to the Simplification Logic for Mixed Attrib‑
utes, we can infer a set of implications with lower cardinality 
and equivalent to the 19 implications above:

We stress that from these four implications, we can derive 
the 19 from the basis of the duplicate context � ∣ � , i.e., 
they condense exactly the same knowledge (that is, they are 
equivalent) with less redundancy. The Simplification Logic 

1:
{

c, d
}

→ {a, b} 11:
{

c, b
}

→

{

d
}

2:
{

b, d
}

→ {c} 12: {c, d} →
{

b, a
}

3:
{

b, c
}

→ {a, d} 13:
{

b, b
}

→

{

a, c, d, a, c, d
}

4:
{

a, d
}

→ {c} 14: {b, d} →
{

a
}

5:
{

a, c
}

→ {b, d} 15: {b, c} →
{

a
}

6:
{

a, b
}

→

{

c, d
}

16:
{

a, a
}

→

{

b, c, d, b, c, d
}

7:
{

d, d
}

→

{

a, b, c, a, b, c
}

17: {a, d} →

{

b, c
}

8:
{

d, b
}

→
{

a, c
}

18: {a, c} →

{

b, d
}

9:
{

d, a
}

→ {b} 19: {a, b} →

{

c, d
}

10:
{

c, c
}

→

{

a, b, d, a, b, d
}

i: {c, d} → {a, b}

ii: {a, b} → {c, d}

iii: {c, d} → {b, a}

iv: {a, b} → {c, d}

for Mixed Attributes allows us to reason wholly and effi‑
ciently from a smaller set of implications.

Furthermore, it should be noted that the knowledge 
extracted in the form of rules in the mixed context can be 
used to deduce the rules of the simple positive and negative 
contexts:

• Implication {c, d} → {b} from � can be obtained using 
the inference rule [Frag] with implication iii. Analo‑
gously, we obtain 

{

a, b
}

→

{

d
}

 (valid in � ) from 
implication ii using the same inference rule.

• Implication {a, b, d} → {c} from � is deduced using the 
following inference chain: 

(a) {d, d} → M ∪M is valid, using axiom [Cont].
(b) From (a), using [Frag], we obtain {d, d} → {c}

.
(c) Use [Frag] on implication iv, {a, b} → {c, d} , 

getting {a, b} → {d}.

(d) By axiom [Ref], we have {d} → {d}.
(e) Applying the inference rule [Comp] on (c) and 

(d), we obtain the implication {a, b, d} → {d, d}.
(f) Using [Simp]  on (e) and (b), we infer 

{a, b, d} → {c}.

   The rest of the implications in � and � are deduced 
similarly.

In summary, we have shown that the set of implications 
for the mixed formal context contains more information 
than the union of the two bases of implications for the 
positive and negative contexts. In other words, there are 
some relations between attributes that none of the two sim‑
ple contexts can capture. Secondly, it can be shown that 
information captured by the two implication bases of the 
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positive and negative contexts is contained in the set of 
implications of the mixed context.   ◻

The notions of logical closure and minimal generator 
are defined as in Sect. 2.2. In this case, since we obtain 
two simple lattices, �(�) and �(�) , and the lattice �#(�) 
of the mixed context, due to the use of different closure 
operators, we have different sets of minimal generators 
associated with each of them.

Notation. From now on, let us denote by Gen(�) the 
set of minimal generators for a given formal context � , 
using the derivation operators ↑ and ↓ , and by Gen#(�) 
the minimal generators associated to the operators 
⇑ and ⇓ . Note that, since �#(�) = �(� ∣ �) , we have 
Gen#(�) = Gen(� ∣ �).

In this work, the minimal generators for the concepts in 
�
#(�) are used to characterise the structure of the knowl‑

edge space. The following theoretical result states that, 
using these generators, we are accounting also for the gen‑
erators of the original knowledge space.

Proposition 2 Let � = (G,M, I) be a formal context and let 
� be its complemented context. The following holds: 

1. If A ⊆ M is a minimal generator of a set C ⊆ M in �(�) , 
then A is also a minimal generator in �#(�) such that 
Pos(A⇓⇑) = C.

2. If A ⊆ M is a minimal generator of a set C ⊆ M in �(�) , 
then A is also a minimal generator in �#(�) such that 
Neg(A⇓⇑) = C.

Proof Let A be a minimal generator of C ⊆ M in �(�) , 
let Z ⊆ A ⊆ M such that Z⇓⇑ = A⇓⇑ . We will show that 
Z = A , which implies that A is also a minimal genera‑
tor in �#(�) . Since Z⇓⇑ = A⇓⇑ , in particular we have that 
Pos(Z⇓⇑) = Pos(A⇓⇑) . Then, by Lemma 1, we have

That is, we obtain that Z is a generator of C ⊆ M . Then, by 
minimality of A we have that Z = A . Note, that in the same 
equation we prove that Pos(A⇓⇑) = A↓↑ = C.

The second statement is proved analogously.   ◻

As a direct consequence of the previous result, we have 
the following corollary, which states that the minimal gen‑
erators of the mixed context contain the minimal genera‑
tors of both simple contexts.

Corollary 1 Let � = (G,M, I) be a formal context and let � 
be its complemented context. It is fulfilled:

Z↓↑ = (Z⇓)↑ = Pos(Z⇓⇑) = Pos(A⇓⇑) = (A⇓)↑ = A↓↑ = C.

Gen(�) ∪ Gen(�) ⊆ Gen#(�).

So when we use the positive and negative information, we 
capture all the generators, i.e., the positive generators, the 
negative and the mixed ones.

A question arises from the last corollary: are there ele‑
ments in Gen#(�) which are neither in Gen(�) nor in 
Gen(�) ? The answer is affirmative, and from now on, we 
focus on showing it in this section.

Proposition 3 Let � = (G,M, I) be a formal context and � 
its complement. Let a ∈ M ∪M . Then: 

(1) If {a}↓ = ∅ , then {a} is a minimal generator of the 
closed set M ∪M in the concept lattice �#(�).

(2) If {a}↓ = G , then {a} is a minimal generator of the 
closed set M ∪M in the concept lattice �#(�).

(3) If ∅ ≠ {a}↓ ≠ G , then A = {a, a} is a minimal genera-
tor of the closed set M ∪M in the concept lattice �#(�).

Proof 

(1) If {a}↓ = ∅ , then {a}⇓⇑ = ({a}↓)⇑ = ∅⇑ = M ∪M  . 
Moreover, note that, since I∗ ≠ ∅ , then ∅⇓⇑ ≠ M ∪M , 
necessarily {a} is minimal.

(2) If {a}↓ = G , then {a}↓ = ∅ in � . Analogously to (1), 
{a} is a minimal generator of M ∪M.

(3) Let us suppose that ∅ ≠ {a}↓ ≠ G , and let us show 
that neither {a} nor {a} generate the closed set M ∪M . 
Since {a}↓ ≠ G , then {a}↓ ≠ ∅ in � . This means 
that there exist g+ ∈ {a}↓ and g− ∈ {a}↓ (using the 
derivation operators of the corresponding contexts). 
Then, (g+, a) ∈ I , or, equivalently (g+, a) ∉ I∗ . Thus, 
a ∉ ({a}↓)⇑ = {a}⇓⇑ . Analogously, using g− , we can 
show that a ∉ {a}⇓⇑ . This means that {a}⇓⇑ and {a}⇓⇑ 
are not equal to M ∪M . In this case, a minimal genera‑
tor is A = {a, a} , since by [Cont], it is A⇓⇑ = M ∪M 
and no subset of A has M ∪M as its closure.

   ◻

The next theoretical result identifies a relation between 
the minimal generators of the concept lattice �#(�) and 
those of �(�) and �(�).

Proposition 4 Let � = (G,M, I) be a formal context. The 
following statements are true: 

(1) If A is a minimal generator in the mixed context, with 
A ⊆ M (i.e., A only consists of positive attributes), 
whose closure is A⇓⇑ = C ⊆ M ∪M , then A is also a 
minimal generator in � and A↓↑ = Pos(C).

(2) If A is a minimal generator in the mixed context, with 
A ⊆ M (i.e., it consists only of negative attributes), and 
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its closure is A⇓⇑ = C ⊆ M ∪M , then A is also a mini-
mal generator in � and A↓↑ = Neg(C).

Proof We will prove (1), since (2) follows an analogous rea‑
soning. Let us consider a minimal generator A ⊆ M in the 
mixed context. Let us take B ⊆ A such that B↓ = A↓ and we 
will show that B = A , which would mean that A ∈ Gen(�) . 
As B↓↑ = A↓↑ , applying the operator ↓ , we obtain B↓↑↓ = A↓↑↓ . 
Using that, for any X ⊆ M , then X↓↑↓ = X↓ (see Proposition 1 
in [27]), we arrive at B↓ = A↓ . Applying Lemma 1, we obtain 
that B⇓ = A⇓ . Again, applying the derivation operator ⇑ , we 
have that B⇓⇑ = A⇓⇑ . Since A is a generator in the mixed 
context, then it must be A ⊆ B . Thus B = A . Therefore, A is 
a minimal generator in �(�) . Moreover, A↓↑ = Pos(C) is a 
consequence of the application of the Lemma 1.   ◻

In what follows, our purpose is to characterise the struc‑
ture of the minimal generators of �#(�) . To this end, we 
introduce the following notation:

Definition 2 Let us consider a formal context � = (G,M, I) . 
We denote:

Gen+(�) (resp. Gen−(�) ) consists of the minimal genera‑
tors composed of only positive (resp. negative) attributes. On 
the other hand, Gen±(�) consists of those minimal genera‑
tors that have both positive and negative attributes. Note that 
Gen±(�) ≠ ∅ if there exists m ∈ M such that ∅ ≠ {m}↓ ≠ G , 
by Proposition 3. We can then prove the following result:

Lemma 2 Let � = (G,M, I) be a formal context. Then 
Gen(�) = Gen+(�) and Gen(�) = Gen−(�).

Proof It is sufficient to use Propositions 2 and 4.   ◻

With this result, we can determine a partition of the set 
of minimal generators of a mixed context:

Corollary 2 Let � = (G,M, I) be a formal context. Then:

This means that there are not only the generators of the 
positive and negative contexts, but with the mixed context, 
we are contemplating others that arise from mixing posi‑
tive and negative attributes.

Gen+(�) = Gen#(�) ∩ 2M

Gen−(�) = Gen#(�) ∩ 2M

Gen±(�) =
{

A ∈ Gen#(�) ∶ A ∩M ≠ ∅, A ∩M ≠ ∅
}

Gen#(�) = Gen(�) ∪ Gen(�) ∪ Gen±(�)

Example 5 Now, we proceed to study the minimal generators 
of the formal contexts of Example 2 and to check that the 
previous theoretical results hold in this running example. For 
the sake of simplicity, we only consider non-trivial minimal 
generators, that is, such that the minimal generator is not the 
concept itself. For example, in the positive lattice �(�) , the 
minimal generator {a, c} is trivial because it generates the 
concept {a, c} again. The list of non-trivial minimal genera‑
tors for �(�) and �(�) is the following: 

For �(�) For �(�)

Concepts Minimal 
generators

Concepts Minimal 
generators

{b, c, d} : {c, d}
{

a, b, d
}

:
{

a, b
}

{a, b, c, d} : {a, b, d} , 
{a, b, c},

{

a, b, c, d
}

:
{

b, c, d
}

 , {

a, c, d
}

,
{a, c, d}

{

a, b, c
}

Notice that there are only four non‑trivial minimal gen‑
erators in each simple context. In contrast, in the mixed con‑
text, we can find new patterns relating positive and negative 
attributes that do not appear in the list above, as is shown 
below. 

Concepts Min. gen. Concepts Min. gen.
{

c, a, d
}

:
{

a, d
} {

b, d, a, c
}

:
{

a, c
}

{

c, a, b, d
}

:
{

a, b
} {

c, b, d
}

:
{

b, d
}

 , 

{

c, b
}

{

b, c, d, a
}

: {c, d}
{

b, d, a
}

:
{

d, a
}

 , {b, d}
{

b, c, a
}

: {b, c}
{

a, d, b, c
}

:
{

b, c
}

 , 

{

d, b
}

 , 
{a, d}

{

a, c, b, d
}

: {a, c}
{

a, b, c, d
}

:
{

c, d
}

 , {a, b}
Concepts Minimal generators

M ∪M :
 

{

b, c, d
}

 , 

{

a, c, d
}

 , 

{

a, b, c
}

 , 

{

d, a, b
}

 , {

d, d
}

 , 

{

c, d, b
}

 , 
{

c, c
}

 , {a, c, d} , 

{

b, b
}

 , 
{a, b, d} , {a, b, c} , 

{

a, a
}

Next, the Hasse diagrams of the minimal generators for 
the mixed and simple contexts are depicted in Fig. 2, where 
we have used the same color code as in Fig. 1. For the sake 
of presentation, we have not included those generators that 
explicitly described a contradiction in the corresponding 
figure: 

{

a, a
}

 , 
{

b, b
}

 , 
{

c, c
}

 and 
{

d, d
}

 . Note that in Fig. 2, 
the reader can easily visualize the new extracted knowledge 
resulting from the use of mixed attributes: firstly, it is visu‑
ally clear that none of those minimal generators of the mixed 
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context coloured by white can be obtained by the minimal 
generators of the positive and negative contexts (coloured 
by blue and orange, respectively); and secondly, all the mini‑
mal generators of the positive and negative contexts are 
embedded in the set of minimal generators of the mixed 
context.   ◻

With the theoretical results and the running example 
in this section, we have illustrated that a greater level of 
granularity in the knowledge extracted from the context and 
a more exhaustive exploration of the relationship between 
attributes can be achieved by working with mixed contexts. 
New hidden patterns arise with the computation of the mini‑
mal generators for mixed formal contexts.

4  Case of Study and Results

In this section, we present a case study where we use the 
previous theoretical results and show their advantages with 
respect to the classical approach. For the sake of reproduc‑
ibility, all the material (dataset and code, as well as a script 
to replicate the results) has been collected and presented in 
a public GitHub repository at https:// github. com/ Malaga‑ 
FCA‑ group/ demo‑ elear ning.

4.1  Introduction to the Case

The object of study is a class of 47 students in the third year 
of compulsory secondary education in Spain (3◦ ESO). The 
analysis is performed by considering the marks of those stu‑
dents in the subject of Mathematics in all the partial exams 
and courseworks made during the course 2020/2021. All 

those exams can be split into three terms (see Table 2). The 
analysis carried out aims to exploit the information obtained 
through the use of mixed contexts (with positive and nega‑
tive attributes) in two ways:

• On the one hand, we propose the use of the mixed lat‑
tice �#(�) to establish the possible learning paths of a 
student;

• On the other hand, we describe the knowledge space gen‑
erated by the students employing the minimal generators.

The analysis has been done in R. The package used for 
the study is fcaR, which was developed by our team and is 
available at the CRAN package repository [28]. This pack‑
age allows the user to compute the main operations of FCA, 
as concept lattices and minimal generators. The dataset, pro‑
vided by the teacher in a spreadsheet, is turned into a formal 
context where the students are the objects and each unit is an 
attribute. A student is related to an attribute if they passed 
the exam of the respective unit. Note that after considering 
its mixed context, we have also the negated attribute that 
determines that a student has failed the respective exam. The 
names of the (positive) attributes are specified in Table 2 
next to the unit, and the negated attribute is represented by 
an overline; e.g., the attribute I and I represent “the stu-
dent has passed the exam of Integers and fractions” and 
“the student has failed the exam of Integers and fractions”, 
respectively.

4.2  First Analysis: Exploration of the Knowledge 
Space

For the first study, the mixed lattice �#(�) has been constructed 
using the NextClosure algorithm [27], yielding a total of 403 
rules in the implication basis and 1769 concepts. This lattice 

Fig. 2  Hasse diagrams of non‑
trivial minimal generators for 
a the positive context � ; b the 
mixed formal context; c the 
negative context �

https://github.com/Malaga-FCA-group/demo-elearning
https://github.com/Malaga-FCA-group/demo-elearning
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can be navigated to determine the path that a learner has fol‑
lowed during the course to either pass or fail an exam. For 
example, let us pose a practical question: what has to happen 
for a student who has failed the polynomials and functions 
exams to pass the course. In Fig. 3, we show the subsemilattice 
formed by those concepts (from �#(�) ) that contain the attrib‑
utes {P, F} ; i.e., the attributes stating that a student failed the 
exams related to the units of Polynomials and Functions. Note 
that the top concept also contains {2ndT} , indicating that all 
the students that have failed those two exams have also failed 

the second term. The same colour code as in Example 3 has 
been used to mark those concepts that also appear in the lat‑
tice �(�) . To improve the readability of this graph, only those 
attributes that do not appear in the nodes immediately above 
are shown in each node. A node marked with ⋆ indicates that 
its attributes are exactly those formed by the union of its upper 
neighbours. To reinforce this fact, the arrows have been labelled 
with symbols + and ∪ indicating that its immediate subcon‑
cepts (below) contain either new attributes (specified in boxes) 
or that the new concept is the union of its upper neighbours, 
respectively. For example, the concept at the bottom, repre‑
sented by an ⋆ , is exactly the concept containing the attrib‑
utes {P, F, 2ndT, I, d, 1stT, 3rdT, M, Final, G, Cwk, S} . 
To answer the posed question, we can observe in Fig. 3 that 
there is a path, marked in blue, according to students that reach 
a knowledge state (concept) in which the attribute Final is 
present, i.e., students that pass the course. This learning path 
includes passing the coursework ( Cwk ), the Statistics exam ( S ) 
and the third term ( 3rdT ), among other possibilities. In contrast, 
we can see that many other paths end with the attribute Final , 
indicating that students have not completed the course success‑
fully. In all these paths, the attribute 3rdT appears, indicating 
that students failing the third term also fail the course.

This exhaustive analysis would not have been possible 
using only the positive and negative contexts, hence the 
importance of the wealth of knowledge that can be extracted 
from the mixed context. Note that using only �(�) or �(�) , 
we could never have inferred the possible dependency rela‑
tionship or learning path between two attributes with oppo‑
site signs (such as in this case).

Table 2  Exams and coursework

1st term:
Integers and fractions (I)
Decimal numbers and scientific notation (D)
Polynomials and numerical sequences (P)
Mark of the first term ( 1stT)
2nd term:
Equations and systems of equations (E)
Functions and graphics (F)
Coursework I (functions with Geogebra) (Cwk)
Mark of the second term ( 2ndT)
3rd term:
Geometry (G)
Statistics (S)
Mark of the third term ( 3rdT)
Mean (M)
Final mark (Final)

Fig. 3  Subsemilattice of the 
mixed context considering those 
concepts containing the attrib‑
utes P and F
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4.3  Second Analysis: Minimal Generators

In the second analysis, we focus on minimal sets of exams 
or terms that lead students to fail the whole course. In this 
case, the mathematical entities of our framework that can 
help us face this question are the minimal generators. In 
particular, our analysis aims at providing answers to the fol‑
lowing question: “Is it possible for a student that has failed a 
certain number of units to pass the course?” or, equivalently, 
“Which are the minimal sets of exams or terms that lead the 
students to fail the module?”.

Notice that, in a well‑structured subject, there should not 
be a unit, nor a small set of units, that implies passing the 
whole course. For such a reason, we do not focus our analy‑
sis on passing the whole course, but on failing it. In this 
line, since Mathematics is a hierarchical subject, in the sense 
of one unit being usually necessary to understand the fol‑
lowing one, we aim to answer whether a student that failed 
some exams would fail all the subsequent exams. Therefore, 
we could support the idea that the contents of one unit can 
be retaken (without a specific exam) during the rest of the 
course. This would mean that even with a rough start, hard 
work pays off.

The computation of all the minimal generators of the 
mixed context produces an aggregate of 24,975 genera‑
tors. For the sake of readability, we have filtered this large 
set to select generators whose support is greater than 10%, 
that is, generators consisting of combinations of attributes 
that appear, at least, in 10% of the cases. Since the minimal 
generators and their closed sets can be unambiguously rep‑
resented by a set of implications, we will use such repre‑
sentation. Thus, any implication in the following will have 
a minimal generator as its left‑hand side. This allows us to 
use the Simplification Logic to further reduce the redun‑
dancies in the implications. After this process, we restrict 
the results to those implications interesting for the question 
posed above and obtain 20 representative implications that 
are related to failing the course:

1: {2ndT, 3rdT} → {Final,M} 11: {d, F, 3rdT} → {I,P, 1stT, 2ndT,Final,M}

2: {F, 2ndT,M} → {3rdT,Final} 12: {d,F, 2ndT,M} → {I,P, 1stT}

3: {F, 2ndT,G} → {3rdT, Final,M} 13: {I, d,P, 3rdT,M} → {F}

4: {1stT, 3rdT,M} → {2ndT, Final} 14: {P, 3rdT,M} → {1stT, 2ndT,Final}

5: {1stT,F} → {I, d,P, 2ndT, 3rdT, Final,M} 15: {P,F,M} → {I, d, 1stT, 2ndT, 3rdT, Final}

6: {d, 2ndT,M} → {Final} 16: {I,P,F} → {d, 1stT, 2ndT, 3rdT, Final,M}

7: {P, 2ndT, 3rdT} → {1stT} 17: {d,P,F} → {I, 1stT, 3rdT, Final,M}

8: {d, 2ndT, 3rdT} → {1stT} 18: {I,F, 2ndT} → {d,P, 1stT, 3rdT, Final,M}

9: {I, d,P, 2ndT, 3rdT} → {F} 19: {I, 2ndT,G} → {Final,M}

10: {P,F, 3rdT} → {I, d, Final, 2ndT, 1stT,M} 20: {I, d, F,M} → {P, 1stT, 2ndT, 3rdT, Final}

Firstly, note that left‑hand side of each implication is a 
minimal generator of a concept containing {Final} . Note 
that, in the right‑hand side of some of these implications, 
{Final} does not appear. This is due to the simplification 
performed to improve legibility. For instance, for rule num‑
ber 7, the consequent does not mention explicitly {Final} , 
but, if we compute the logical closure of the antecedent 
{P, 2ndT, 3rdT} we obtain {P, 1stT, 2ndT, 3rdT, Final,M} . 
It suffices to observe that we can use [Comp] with rules 1 
and 7 to infer the logical closure.

Secondly, for the sake of understating, let us explain the 
information represented by some implications in detail. Let 
us start with rule 1; this one says that every student who 
has failed the second and third terms has failed the mean of 
the marks of the whole course and failed the course. This is 
an obvious piece of information from the teaching point of 
view. A student who fails two out of three terms will hardly 
ever pass the module (in this particular case, this situation 
does not arise, not even once). Whenever an algorithm gives 
trivial information as an output, it can be seen as a sign of 
the approach being coherent and trustworthy. However, not 
all the information given by this set of implications is trivial. 
For instance, rule 5 states that if a student has failed the 
first term and the Functions exam, then the student has also 
failed the Integers exam, the Decimals exam, the Polynomi‑
als exam, the second term, the third term and the final mark. 
In other words, every student that has failed the first term 
and Functions, a single unit in the second term, has failed 
the course. This emphasises somehow that Mathematics 
has a pyramidal structure, where a lack of basic knowledge, 
namely failing the first term, makes learning new concepts 
significantly harder. Actually, the set of implications shows 
up the importance of the Functions unit to pass the course. It 
does not only appear in the previously described implication 
5 but also in the antecedent (i.e., in minimal generators) of 
implications 2, 3, 10, 11, 12, 15, 16, 17, 18 and 20.
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On the other hand, we have the information reported by 
implication 6, whose antecedent contains the only mixed set 
of attributes; specifically, the positive attribute D and nega‑
tive attributes 2nd and M . Note that this implication would 
not be obtained if we were using only positive or negative 
contexts. This implication states that every student that has 
passed the Decimals unit but failed the second term and 
the mean of the module failed the whole subject. Failing 
the average mark of the module is often a strong enough 
condition to fail the entire module, but this is not true in 
every single case. Some students have a failed average mark 
but passed the course anyway. This is due to some hidden 
evaluation method carried out by the teacher that depends on 
information that is not explicitly shown in the dataset; e.g., 
behaviour in class, punctuality, submitting homework on 
time, etc. Anyway, note that FCA is capable to show up this 
hidden evaluation method, since the single set of attributes 
{M} is not a minimal generator.

Finally, concerning the posed question: Which are the 
minimal sets of exams or terms that lead the students to 
fail the module? We focus on implication 16, which says 
that every student who has failed Integers, Polynomials and 
Functions, has failed the subject, Decimals and the first 
and third term. Hence, there is a set of units whose failure 
implies failing the whole module. Note that this set is not 
unique. For example, implication 17 says that every student 
who has failed Decimals, Polynomials and Functions exams 
has failed the whole module.

A final remark: one could argue that a similar analysis can 
be done using only positive or negative attributes, to detect, 
for instance, how failing some items leads to failing the 
whole course. However, we must emphasise that the combi‑
nation of positive and negative attributes provides a higher 
level of granularity that cannot be achieved otherwise. To 
reflect this point, note that, out of the 24,975 minimal gen‑
erators, 24,023 are mixed, 509 are purely positive and 443 
are purely negative. That is, more than 96% of the genera‑
tors are mixed. Thus, using only one of the simple contexts 
would not allow us to reach the level of expressiveness and 
granularity that we can achieve with the mixed context.

To complete this remark and demonstrate that the mixed 
information (not purely positive or negative) is not inciden‑
tal, a more comprehensive listing of mixed minimal gen‑
erators related to this problem is presented in Appendix A, 
showing the richness of the information retrieved by Formal 
Concept Analysis in the mixed context.

The reader can observe that the use of mixed attributes, 
along with the proposed algebraic and logic tools, allows us 
to determine the structure of the knowledge obtained by the 
students during the course. Note that some pieces of that 
knowledge are not directly visible to the naked eye from 

the raw data, i.e., they cannot be derived without the use of 
formal tools.

5  Conclusions and Future Work

In this paper, we have recalled the basic notions of FCA, 
Simplification Logic and the relationship of those theories 
with Knowledge Space Theory. Furthermore, we have pre‑
sented some new theoretical results about the minimal gen‑
erators in FCA using positive and negative attributes. The 
most remarkable result states that the minimal generators 
of a mixed context contain not only the minimal generators 
of the positive and negative contexts but also new minimal 
generators not purely positive or negative. Consequently, 
we have shown the advantages of using the mixed context 
instead of using the context with just positive or negative 
information.

In addition, we have presented a case study. Specifi‑
cally, we have analysed the students’ marks in a Math‑
ematics course in a High School in Andalusia and we have 
constructed its corresponding Knowledge Space. We have 
extended the approach of [15], using the information when 
a student fails or passes an exam. We have computed the 
minimal generators of the formal context and studied those 
that lead the students to fail the whole module. We have 
had some expected information but have collected some 
non‑trivial information as well. Actually, we have explicitly 
shown that we can obtain a deeper insight by the use of 
mixed attributes than by the standard FCA approach. This 
information might be a helpful reference for teachers when 
preparing the course organisation.

As future work, we plan to extend this study to the fuzzy 
framework. This will allow us to capture a finer grain in 
the information and a higher level of detail when modelling 
the knowledge space. In the long‑term, an analysis of the 
subjects of a whole course would be helpful to find depend‑
encies between different subjects, not only in Mathematics.

Appendix A Mixed Minimal Generators

Mixed minimal generators, i.e. with both positive and 
negative attributes, and which, according to the theoretical 
results, are not deduced from any of the individual contexts, 
can be numerous. Of the 24,975 minimal generators that can 
be calculated for the mixed context of the case study, a total 
of 24,023 are mixed.

As an example of the richness and expressiveness of 
mixed attributes, in the following table, we show those 
minimal generators whose closure contains the attribute 
Final and which are mixed (neither purely positive nor 
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negative), with a minimum support of 1%. In other words, 
they are the left‑hand sides of implications whose right‑
hand side contains Final . 

{

d,S
} {

Cwk, 2ndT,S,M
} {

d,F, 2ndT,S
}

{

d, 1stT
} {

E,Cwk, 2ndT,M
} {

I,E,G, 3rdT
}

{

Cwk, 2ndT,G
} {

F,S, 3rdT,M
} {

I, d,F, 3rdT
}

{

d, 2ndT,M
} {

E,F,S, 3rdT
} {

E,F,G,S,M
}

{

I, 3rdT,M
} {

1stT,E,Cwk, 2ndT
}{

1stT,F,G,S,M
}

{

I, d, 3rdT
} {

P,E,Cwk, 2ndT
} {

1stT,E, 2ndT,S,M
}

{

I,S, 3rdT
} {

1stT, 2ndT,G,S
} {

1stT,E, 2ndT,G,M
}

{

I,S, 3rdT
} {

I, 1stT,S,M
} {

P,F,G,S,M
}

{

I,G, 3rdT
} {

I, 1stT,G,S
} {

P,E, 2ndT,G,M
}

{

P,Cwk,S
} {

1stT, 2ndT,G,S
} {

P, 1stT, 2ndT,G,M
}

{

I,F, 3rdT
} {

1stT,E,Cwk,M
} {

I, d,P, 3rdT,M
}

{

I,E, 3rdT
} {

P, 2ndT,G,S
} {

d,E,Cwk, 3rdT,M
}

{

1stT,Cwk,S
} {

I,P,S,M
} {

I,E,Cwk, 3rdT,M
}

{

d,P,M
} {

I,P,G,S
} {

I, d,E, 3rdT,M
}

{

d,P, 3rdT
} {

P, 2ndT,S,M
} {

I, 1stT,F,G,S
}

{

I,P, 3rdT
} {

d,P,F, 2ndT
} {

I,P,G, 3rdT,M
}

{

d,F,M
} {

I,P, 2ndT,M
} {

1stT,F, 2ndT,G, 3rdT,M
}

{

I, 1stT, 3rdT
} {

P, 2ndT,G,S
} {

P,F, 2ndT,G, 3rdT,M
}

{

I,Cwk, 2ndT
} {

P,E,Cwk,M
} {

P, 1stT,F,G, 3rdT,M
}

{

I, d, 2ndT
} {

I, d,G, 3rdT
} {

I,P, 1stT,F,G, 3rdT
}

{

I, d,P
} {

d,E,F, 2ndT
} {

I, d,P, 1stT,F,G
}

{

2ndT,G,S,M
} {

d,S, 3rdT,M
} {

I,P, 1stT,F,S, 3rdT
}

{

Cwk,S, 3rdT,M
} {

d,G,S, 3rdT
}

{

F,G,S, 3rdT
} {

d, 2ndT,G,S
}
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