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Abstract: Concepts and implications are two facets of the knowledge contained within a binary
relation between objects and attributes. Simplification logic (SL) has proved to be valuable for the
study of attribute implications in a concept lattice, a topic of interest in the more general framework
of formal concept analysis (FCA). Specifically, SL has become the kernel of automated methods to
remove redundancy or obtain different types of bases of implications. Although originally FCA used
only the positive information contained in the dataset, negative information (explicitly stating that
an attribute does not hold) has been proposed by several authors, but without an adequate set of
equivalence-preserving rules for simplification. In this work, we propose a mixed simplification
logic and a method to automatically remove redundancy in implications, which will serve as a
foundational standpoint for the automated reasoning methods for this extended framework.

Keywords: formal concept analysis; implicational systems; negative attributes

1. Introduction

Since the 1980s, formal concept analysis (FCA) has been a solid framework to analyze
data and extract hidden knowledge, comparable to other well-known techniques in terms
of cost. Given a binary table, called formal context, FCA can build ontologies similar to
AI-based knowledge representation methods [1] but with a solid algebraic structure, in
which order theory and logic are the main tools: given a formal context, FCA builds a hier-
archical structure of concepts, the so-called concept lattice (indeed a complete lattice), which
encompasses all the information in the formal context. Moreover, in the same process, FCA
returns sets of implications and/or association rules (well-known in other areas such as
data mining, machine learning, and rough set theories) with a rich algebraic framework in
which we can also compute closed sets and their minimal generators, pseudointents, differ-
ent types of bases, etc. This knowledge can reveal interesting patterns and solve significant
problems in modern areas as social network analysis [2,3] or recommender systems [4,5].

In the classical framework of FCA, the formal context is a binary relation between
the elements of two sets, that is, a relationship between a set of objects and a set of at-
tributes, establishing the properties that each object does satisfy (namely, positive information).
Notwithstanding, sometimes the properties that are not satisfied for each object (negative
information) are also relevant. For instance, in a table in which objects are birds, the object
“ostrich” shall not have the property (attribute) “fly”. That is, for “ostrich”, not only the
positive information is relevant (“large”, “heavy”, “fast”); the negative information (“does
not fly”) is also relevant.

The management of negative attributes in association rules already appeared in [6,7].
Mining concise sets of association rules (also called bases) is of particular importance in the
machine learning community, and, to this end, several works have been proposed that, on
top of the classical minimum support–minimum confidence strategy, impose other measures of
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interestingness [8] or informativeness [9] based on statistical parameters, which help in the
pruning of frequent item sets when determining a representative set of association rules.

In our work, we focus on exact association rules (also called implications); hence, we
resort to the framework of FCA, where the first occurrences of negative information appear
in Missaoui et al. [10,11], in which the authors computed mixed implications (with positive
and negative attributes) from a double context formed by the initial context together with its
opposite. This last approach can generate a huge number of redundant rules and algorithms
executed with increased execution time. Moreover, and more importantly, the relationship
between positive and negative information (mixed attributes) is not considered.

In [12], Rodríguez et al. proposed a generalization of classical FCA to consider both
positive and negative attributes together with the relationship between them. New deriva-
tion operators and a Galois connection was defined to extend the classical framework.
In addition, algorithms to compute the mixed concept lattice and mixed implications were
proposed; furthermore, an axiomatic system based on the simplification paradigm was
proposed to manage mixed implications [13] .

In different areas, such as artificial intelligence, database theory, data mining, and
machine learning, one of the main problems is the huge degree of redundancy contained
in the rules extracted from a dataset. The focus of this work is the study of redundancy
elimination in implications with positive and negative attributes. We must recall that
several authors have worked to remove redundancy in association rules in data mining.
Zaki [14] used the notion of closed itemsets to reduce the set of rules, and also stated “the
number of redundant rules is exponential in the length of the longest frequent itemsets”.
Other works study the relaxation of the notion of closure and closed itemsets [15] to describe
a compact set of association rules which is approximately informative in the sense that the
support and confidence of the remaining association rules can be derived from this compact
set with high accuracy. Very recent works [16,17] prove that this is still an open problem.

When dealing with implications, our team has worked on this problem, providing the
axiomatic system of simplification logic [18], on which it is possible to develop automated
methods to remove redundancy in formal concept analysis which constitute the core to ob-
tain bases of implications [19]. However, all these works consider the positive information
in the dataset. To the best of our knowledge, no methods have been developed to eliminate
redundancy in the rules when considering positive and negative attributes within the rules.

In this paper, we develop an automated logic-based method to remove redundancy in
a set of mixed implications, that is, implications relating positive and negative attributes.
For this, we propose the notion of a simplified mixed implicational system and an axiomatic
system equivalent to that given in [12], but with rules better suited for implementation. The
main idea is a set of logical equivalences oriented to detect redundancy and contradictions
between positive and negative attributes, and therefore to simplify the set of implications,
by removing attributes inside a single implication or even removing the whole implication.

The rest of this work is structured as follows: in Section 2, we present some preliminary
notions about FCA and implicational systems with positive and mixed attributes. In
Section 3, the idea of a simplified mixed implicational system is presented together with
its motivation. In Section 4, we present logical equivalence rules especially suited for
implications with mixed attributes, with the purpose of simplifying the set of implications.
The algorithm to build simplified systems of implications is presented in Section 5, and a
thorough experimental evaluation of the simplification achieved by the proposed algorithm
is given in Section 6, as well as a discussion of the obtained results. The conclusions and
future research lines are presented in Section 7. For the sake of readability, the proofs of the
technical results of this work are collected in Appendix A.

2. Preliminary Notions and Results

Formal concept analysis (FCA) [20,21] is a mathematical theory based on lattice theory
which analyses the information given in a formal context, i.e., a relationship between a set of
objects and a set of attributes stored in a table. Usually, a formal context is given by a triple
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K = (G, M, I), where G is the set with all the objects, M is the set with all the attributes and
I is called the incidence and is defined by I : G×M→ {0, 1} and I(g, m) = 1 if the object
g has the attribute m and I(g, m) = 0 otherwise.

FCA extracts the information stored in a formal context by using the derivation
operators, namely, the pair of mappings (↑,↓ ) defined as follows: given X ⊆ G, we have
that X↑ = {m ∈ M | I(g, m) = 1 for all g ∈ X}, that is, the attributes shared by all the
objects in X, and, given Y ⊆ M, we have Y↓ = {g ∈ G | I(g, m) = 1 for all m ∈ Y}, that
is, all the objects that share all the attributes in Y. Using the derivation operators, a formal
concept is defined as a pair (X, Y) satisfying X↑ = Y and X = Y↓; the set of formal concepts
can be ordered by inclusion in the first component, and this ordering provides the structure
of a complete lattice.

Another type of information provided by a formal context is given by the so-called
attribute implications, which are any expression of the form A→ B where A and B are sets
of attributes, i.e., A, B ⊆ M for a given a formal context K = (G, M, I). We are interested in
implications that hold in the formal context K: an implication A→ B holds in K if A↓ ⊆ B↓,
i.e., if all the objects that have all the attributes from A satisfy the attributes from B as well.
We denote by LM the set of all the implications in M.

Simplification logic (S) [18] was introduced as a means to remove redundancies in a
given set of implications that hold in a formal context. The axiom system for S consists of
the axiom schema [Ref] and the three inference rules [Frag], [Comp], [Simp] given below
for all sets A, B, C ⊆ M:

[Ref] Reflexivity: `S A→ A.

[Frag] Fragmentation: (We will follow the usual convention in this research area of
omitting the symbol ∪ whenever necessary. For instance, in this rule BC means
B ∪ C.) A→ BC `S A→ B.

[Comp] Composition: A→ B, C → D `S AC → BD.

[Simp] Simplification: A→ B, C → D `S A(C r B)→ D.

The notion of inference in S is defined as usual: let φ be an implication in LM and let
Σ be a set of implications in LM. We say that φ is a syntactic consequence of Σ in S (and we
denote it by Σ `S φ, if there exists a sequence of implications φ1, . . . , φn such that φn = φ)
and, for all φi with 1 ≤ i ≤ n we have either φi ∈ Σ or we can obtain φi by applying one of
the rules of S to the implications in the set {φj | j < i}.

We recall below some derived rules from simplification logic, which we will use in
this paper. The proof is straightforward using the definition of derivation. Given a set of
attributes M, the following inference rules hold for all A, B, C, D ∈ M:

[GenRef] Generalized reflexivity: `S A→ C if C ⊆ A.

[Augm] Augmentation: A→ B `S AC → BC.

It is worth mentioning that some rules of simplification logic are in fact logical equiva-
lences. The main equivalence rules that we have in the S are the following:

[FragEq] {A→ B} ≡ {A→ B r A}.
[UnEq] {A→ B, A→ C} ≡ {A→ BC}.
[GenEq] {A→ B, C → D} ≡ {A→ BD} when A ⊆ C ⊆ AB.

[∅-Eq] {A→ ∅} ≡ ∅.

[SimpEq] {A→ B, C → D} ≡ {A→ B, C r B→ D r B} when A ⊆ C r B.

Thus far, we have used the information explicitly given by the formal context, but have
said nothing about pairs satisfying I(g, m) = 0. The point is that, in principle, I(g, m) = 0
does not mean that object g does not have the attribute m; it means that we do not have
any evidence either in favour or to the contrary. If I(g, m) = 0, then we affirm that the
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object g does not have the attribute m. Some authors [11,12,22,23] assume that I(g, m) = 0
means that the object g does not have the attribute m. To the best of our knowledge,
the paper [11] was the first of these approaches which, given K = (G, M, I), built a new
formal context (K | K) = (G, M ∪ M, I∗) where I∗(g, m) = I(g, m) for all m ∈ M and
I∗(g, m) = min(1, 1 − I(g, m)); that is, I∗(g, m) = 0 if I(g, m) = 1 and I∗(g, m) = 1
otherwise. In this approach, the attributes in M are called positive and those in M are
called negative. Note that, with this view, we duplicate the number of columns, and, as a
consequence, the method is not the most efficient possible.

In this work, we adopt the approach considered in [12] in which I(g, m) = 0 means
that the object g does not have the attribute m and, instead of duplicating the number of
columns, the derivation operators are changed without changing the formal context.

The extended operators considered here are ⇑ : 2G → 2M∪M and ⇓ : 2M∪M → 2G, and
are defined as follows:

X⇑ = {m ∈ M | (g, m) ∈ I ∀ g ∈ X} ∪ {m ∈ M | (g, m) 6∈ I ∀ g ∈ X}

Y⇓ = {g ∈ G | (g, m) ∈ I ∀ m ∈ Y} ∩ {g ∈ G | (g, m) 6∈ I ∀ m ∈ Y}
When considering both positive and negative attributes, we will say that we are using a
mixed context; when working with K (resp. K) with the classical view, we say that we are
working with a positive (resp. negative) context.

As in the classical case, we can define when an implication holds in a mixed context in
terms of ⇑ and ⇓ as follows: A→ B is valid in a mixed context (denoted by K |= A→ B) if
and only if A⇓ ⊆ B⇓.

The axiom system of simplification logic was extended to this new approach with
mixed attributes in [12,24].

The new axiomatic system contains one axiom schema [Ref] and four inference rules,
[Simp], [Key], [InKey] and [Red]:

[Ref] Reflexivity: `S A→ A.

[Simp] Simplification: A→ B, C → D `S A(C r B)→ D.

[Key] Key: (Following the convention, hereonwards b represents the singleton {b}, and
Ab means A ∪ {b}). A→ b `S Ab→ MM.

[InKey] Inverse key: Ab→ MM `S A→ b.

[Red] Reduction: Ab→ C, Ab→ C `S A→ C.

This new system is a proper extension of that of simplification logic in that rules
[Frag] and [Comp] can be derived from the new axioms [12]. Our set of derived rules can
be further extended by a version of the ex contradictione quodlibet and the contraposition rule:

[Cont] Contradiction: ` aa→ MM.

[Rft] Reflection: Aa→ b ` Ab→ a.

Notice that [Key] is in fact the converse of [InKey], and they provide an equivalence
between the implications Ab→ MM and A→ b, which reflects the fact that whenever the
set A∪ {b} is inconsistent, then A→ b should hold. Moreover, a version of the well-known
cut rule arises as the equivalence between A→ C and the set {Ab→ C, Ab→ C}.

3. Simplified Mixed Implicational Systems

In order to formally define the notion of asimplified mixed implicational system, we will
use the following notation:

Notation 1. Hereafter, we will use X := {x : x ∈ X} and notice that x = x for any x ∈ MM.
Thus, x ∈ X if, and only if, x ∈ X. For any A, B ⊆ MM, we have AB = A B and also
A ∩ B = A ∩ B.
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Definition 1. Let M be a set of attributes and Σ be an implicational system with attributes in
MM. Σ is said to be a simplified mixed implicational system (or sm-implicational system in
short) if the following conditions hold for all A→ B, C → D ∈ Σ:

(i) B 6= ∅ and A ∩ B = ∅;
(ii) A = C implies B = D;
(iii) A ( C implies C ∩ B = ∅ = D ∩ B;
(iv) B 6= MM and A ∩ A = ∅;
(v) If x ∈ A ∩ C and A r x = C r x, then D 6⊆ B.

The first three properties are inherited from the definition of a simplified implicational
system by [19] and express the idea that the size of the problem cannot be reduced by
applying the equivalence rules for positive attributes. We comment below on the ideas
underlying conditions (iv) and (v), which are specific to the case of mixed attributes.

For (iv), the condition B 6= MM refers to the fact that, on the one hand, ∅→ MM is not
admissible and, on the other hand, if A 6= ∅, we would have that A→ MM is equivalent
to A r x → x for any x ∈ A (hence, the system would be reduced by considering the
latter). Furthermore, by the derived rule [Cont], any implication of the form A→ B with a
contradiction in the antecedent (A ∩ A 6= ∅) is valid; therefore, it can be safely removed
from the implicational system.

Finally, (v) expresses syntactically a situation in which rule [Red] would apply. If
A r x = C r x, there exists a set of attributes S such that A = Sx and C = Sx. In addition,
if D ⊆ B, we would have

{A→ B, C → D} = {Sx → B, Sx → D}
≡ {Sx → B r D, Sx → D, Sx → D} [FragEq]

≡ {Sx → B r D, S→ D} [Red];

hence, the size of the system can be reduced.

The next theorem provides a set of equivalence rules oriented to obtaining an au-
tomated method to build an sm-implicational system from a given one. For the sake of
readability, the proofs of all the technical results are collected in Appendix A.

Theorem 1. Let K = (G, M, I) be a formal context and A, B, C, D ⊆ MM. Then, the following
equivalences hold:

[KeyEq] If A ⊆ C and B ∩ C 6= ∅, then

{A→ B, C → D} ≡ {A→ B}.

[InKeyEq] If there exists x ∈ A r C, such that A r x ⊆ C, then

{A→ MM, C → D} ≡ {A→ MM, C → Dx}.

[RedEq] If D ⊆ B and there exists x ∈ A ∩ C, with A r x ⊆ C r x, then

{A→ B, C → D} ≡ {A→ B, C r x → D}.

By using the previous theorem, we propose the following inference rules, which are
more convenient to be implemented algorithmically.

[Ref] Reflexivity: ` A→ A.

[Simp] Simplification: A→ B, C → D ` A(C r B)→ D.

[Key′] Key: A→ B, C → D ` C → MM if A ⊆ C and B ∩ C 6= ∅.
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[InKey′] Inverse key: A → MM, C → D ` C → Dx if there exists x ∈ A r C and
A r x ⊆ C.

[Red′] Reduction: A→ B, C → D ` C r x → D if D ⊆ B and there exists x ∈ A ∩ C with
A r x ⊆ C r x.

Of course, this new axiomatic system is equivalent to the initial one, as shown in the
theorem below.

Theorem 2. The system formed by rules [Ref], [Simp], [Key′], [InKey′] and [Red′] is equiva-
lent to that formed by [Ref], [Simp], [Key], [InKey] and [Red].

4. Simplification via Equivalence Rules

In this section, we introduce some other equivalence rules that will be useful for
removing redundant attributes. The starting point will use the following result:

Lemma 1. For all A, B, C, D ⊆ MM, we have:

[ContEq] If A ∩ A 6= ∅, then {A→ B} ≡ ∅.

[ContEq′] If A 6= ∅ and AB ∩ B 6= ∅, then {A → B} ≡ {A → MM} ≡ {A r x → x} for
any x ∈ A.

[ContEq′′] If C 6= ∅, A ⊆ CD and B ∩ CD 6= ∅, then, for any x ∈ C

{A→ B, C → D} ≡ {A→ B, C → MM} ≡ {A→ B, C r x → x}.

The equivalences above allow us to detect contradictions and, hence, reduce the size
of the set of implications. Below, we propose some other equivalence rules that take
into account the possible relationship between different implications in order to reduce
their size.

Theorem 3. Consider A, B, C, D ⊆ MM:

[KeyEq′] If there exist x ∈ A ∩ D, y ∈ B ∩ C with A r x = C r y, then

{A→ B, C → D} ≡ {A→ B r y, C r y→ y} ≡ {A→ B r y, C → MM}.

[KeyEq′′] If A ⊆ C 6= ∅ and B ∩ D 6= ∅, for any x ∈ C we have that then

{A→ B, C → D} ≡ {A→ B, C r x → x}.

[RedEq′] If D ⊆ B and there exists x ∈ A ∩ C such that A r x = C r x, then

{A→ B, C → D} ≡ {A→ B r D, C r x → D}.

[RftEq] If there exist x ∈ A, y ∈ B ∩ C and A r x = C r y, then

{A→ B, C → D} ≡ {A→ B r y, C → Dx}.

[RftEq′] If there exist x ∈ A ∩ D, y ∈ B ∩ C and A r x ⊆ C r y, then

{A→ B, C → D} ≡ {A→ B, C → D r x}.

[MixUnEq] If there exist x ∈ A, y ∈ C such that A r x = C r y and b ∈ D, then

{A→ b, C → D} ≡ {(A r x)b→ xy, C → D r b}.
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Among all the rules above, there are two which, in principle, do not help to reduce
the size of the system([RftEq] and [MixUnEq]), but guarantee to keep the number of
attributes fixed. However, there is a particular case where the size is reduced as a result of
removing implications: the application of either [RftEq] or [MixUnUnitEq] when one of
the implications is a unit implication (its right-hand side has only one element) allows to
remove that implication. The result is formally stated in the following corollary:

Corollary 1. For all A, C, D ⊆ MM and b, y ∈ MM, the following equivalences hold:

[RftUnitEq] If y ∈ C and there exist x ∈ A such that A r x = C r y, then

{A→ y, C → D} ≡ {C → Dx}.

[MixUnUnitEq] If there exist x ∈ A, y ∈ C such that A r x = C r y, then

{A→ b, C → b} ≡ {(A r x)b→ xy}.

5. Automatic Computation of sm-Implicational Systems

In this section, we propose an algorithm to simplify a system of implications with
positive and negative attributes. The algorithm is based on the equivalence rules obtained
in Section 3 and Section 4. For the sake of readability, the main algorithm is decomposed
into subroutines that check the conditions required to apply certain equivalence rules.

Following the same strategy as in Section 4, we start by defining the algorithms
to simplify the implications that contain contradictions. In Algorithm 1, we translate
[ContEq′] into pseudo-code, whereas in Algorithm 2 we do the same with [ContEq′′].

Algorithm 1: Simplify-Cont(A→ B)

1 if A 6= ∅ and B ∩ AB 6= ∅ then // Conditions for [ContEq′]
2 Select x ∈ A
3 A := A r x; B := x
4 return A→ B

In Algorithm 2 below, we work with two implications, A → B and C → D, and
check the conditions of [ContEq′′] in both orders by changing the roles of A → B and
C → D in the equivalence rule, so we can simplify both implications in a single execution
of Simplify-Cont2. We will make use of this strategy in the rest of the algorithms.

Algorithm 2: Simplify-Cont2(A→ B, C → D)

1 if A 6= ∅ and C ⊆ AB and D ∩ AB 6= ∅ then // Conditions for [ContEq′′]
2 Select x ∈ A
3 A := A r x; B := x
4 else if C 6= ∅ and A ⊆ CD and B ∩ CD 6= ∅ then // Converse conditions
5 Select x ∈ C
6 C := C r x; D := x
7 return (A→ B, C → D)

The equivalence rules [KeyEq] and [KeyEq′] are presented in Algorithm 3. Observe
that the conditions of those equivalence rules are nested since they had some common
requirements so the algorithm can be written more compactly. Additionally, notice that
when an implication X → Y can be removed from the implicational system due to the use
of an equivalence rule, in the algorithms, it is indicated as X, Y := ∅.
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Algorithm 3: Simplify-Key(A→ B, C → D)

1 if B ∩ C 6= ∅ then
2 if A ⊆ C then C, D := ∅ // Conditions for [KeyEq]
3 else if A ∩ D 6= ∅ then // [KeyEq′] branch
4 foreach x ∈ A ∩ D, y ∈ B ∩ C do
5 if A r x = C r y then
6 B := B r y; C := C r y; D := y
7 if A ∩ D 6= ∅ then
8 if C ⊆ A then A, B := ∅ // Converse of [KeyEq]
9 else if B ∩ C 6= ∅ then // Converse of [KeyEq′]

10 foreach x ∈ A ∩ D, y ∈ B ∩ C do
11 if A r x = C r y then
12 D := D r x; A := A r x; B := x
13 return (A→ B, C → D)

Algorithm 4 presents the pseudocode for [KeyEq′′]. It has not been incorporated
into the same algorithm as [KeyEq] and [KeyEq′] for the sake of readability. The equiva-
lence rules derived from the inference rule [Red]are condensed in Algorithm 5. Then, in
Algorithm 6, we present the equivalence rules [RftEq′] and [RftUnitEq].

Algorithm 4: Simplify-Key2(A→ B, C → D)

1 if B ∩ D 6= ∅ then
2 if C 6= ∅ and A ⊆ C then // Conditions for [KeyEq′′]
3 Select x ∈ C
4 C := C r x; D := x
5 else if A 6= ∅ and C ⊆ A then // Converse for [KeyEq′′]
6 Select x ∈ A
7 A := A r x; B := x
8 return (A→ B, C → D)

Algorithm 5: Simplify-Red(A→ B, C → D)

1 if A ∩ C 6= ∅ then
2 if D ⊆ B then // Conditions for [Red]
3 foreach x ∈ A ∩ C do
4 if A r x ⊆ C r x then
5 C := C r x
6 if A r x = C then B := B r D // Condition for [RedEq′]
7 else if B ⊆ D then // Converse conditions
8 foreach x ∈ A ∩ C do
9 if C r x ⊆ A r x then

10 A := A r x
11 if A = C r x then D := D r B
12 return (A→ B, C → D)
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Algorithm 6: Simplify-Rft(A→ B, C → D)

1 if B ∩ C 6= ∅ then
2 if |B| = 1 and A 6= ∅ then // [RftUnitEq] branch
3 Let y be the only element in B ∩ C
4 foreach x ∈ A do
5 if A r x = C r y then
6 D := Dx; A, B := ∅
7 else if A ∩ D 6= ∅ then // [RftEq′] branch
8 foreach x ∈ A ∩ D, y ∈ B ∩ C do
9 if A r x ⊆ C r y then // Direct

10 D := D r x
11 else if C r y ⊆ A r x then // Converse
12 B := B r y
13 else if |D| = 1 and C 6= ∅ and A ∩ D 6= ∅ then // Converse [RftUnitEq]
14 Let y be the only element in A ∩ D
15 foreach x ∈ C do
16 if C r x = A r y then
17 B := Bx; C, D := ∅
18 return (A→ B, C → D)

Algorithm 7 presents the code for the equivalence rule [MixUnUnitEq]. It is a simple
translation of the conditions into pseudocode. Note that, in this case, there is no need to
include the converse conditions due to the equality required.

Algorithm 7: Simplify-MixUnUnit(A→ B, C → D)

1 if |B| = 1 and B = D and A, C 6= ∅ then
2 foreach x ∈ A do
3 foreach y ∈ C do
4 if A r x = C r y then
5 Let b be the only element in B
6 A := (A r x)b; B := xy; C, D := ∅
7 return (A→ B, C → D)

The complete method is presented in Algorithm 8, which incorporates the other
algorithms in order to simplify the implications with all the studied equivalence rules.
We can explain its procedure as follows: firstly, the set Σ′ of proper implications (i.e.,
the antecedent and consequent are disjoint) without contradictions is built from Σ. We
initialize Σs := Σ′ and reset Σ′. We will use Σ′ as a list to store the simplified implications
in each iteration.

For each implication A → B ∈ Σs, we try to simplify it with the other implications
already stored in Σ′. If the result after simplification is a proper implication (nonempty
consequent), it is added to Σ′. By this procedure, all implications are compared with
each other, and both A → B ∈ Σs and all C → D ∈ Σ′ are simplified in a single step.
The algorithm checks whether the implications have any contradiction; in that case, rules
[ContEq] and [ContEq′] are used (lines 5 and 8). Lines 9–10 express the conditions to use
[GenEq], that is, where A→ B is more general than C → D or vice versa, keeping only the
more general. If it is not the case, then the algorithm proceeds to check the conditions of the
simplification rules described in Sections 3 and 4. The first simplification to be considered
is [SimpEq] (lines 12–15), since it allows us to remove attributes from both the left-hand
and right-hand sides of the implications, whenever applicable. Later, the algorithm checks
all the simplifications that are specific for mixed attributes and that have already been
described in Algorithms 2 to 7. Line 22 is used to add the implications C → D that have
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not been removed after all the simplification steps. Lines 23–26 add the implication A→ B
(if it has not been removed) to Σ′.

Algorithm 8: Simplify-Mixed(Σ)
Input: Σ: a set of implications.
Output: Σs: an sm-implicational system that is equivalent to Σ.
// Consider only proper implications (A ∩ B = ∅) without

contradictions
1 Σ′ := {A→ B r A|A→ B ∈ Σ, B 6⊆ A, A ∩ A = ∅}
2 repeat
3 Σs := Σ′; Σ′ := ∅
4 foreach A→ B ∈ Σs do
5 A→ B := Simplify-Cont(A→ B)
6 Γ := ∅
7 foreach C → D ∈ Σ′ do
8 C → D := Simplify-Cont(C → D)
9 if C ⊆ A ⊆ CD or A ⊆ C ⊆ AB then // [GenEq]

10 A := A ∩ C; B := BD
11 else // Apply simplifications sequentially

// First, general simplifications
12 if A ( C and D 6⊆ B then // [SimpEq]
13 C := C r B; D := D r B
14 else if C ( A then
15 A := A r D; B := B r D

// Simplifications specific for mixed attributes
16 (A→ B, C → D) := Simplify-Red(A→ B, C → D)
17 (A→ B, C → D) := Simplify-Key(A→ B, C → D)
18 (A→ B, C → D) := Simplify-Key2(A→ B, C → D)
19 (A→ B, C → D) := Simplify-Rft(A→ B, C → D)
20 (A→ B, C → D) := Simplify-Cont2(A→ B, C → D)
21 (A→ B, C → D) := Simplify-MixUnUnit(A→ B, C → D)
22 if D 6= ∅ then Γ := Γ ∪ {C → D}
23 if B = ∅ then Σ′ := Γ
24 else
25 A→ B := Simplify-Cont(A→ B)
26 Σ′ := Γ ∪ {A→ B r A}
27 until Σs = Σ′

28 return Σs

The theorem below proves the termination and correctness of Algorithm 8 in the sense
that the ouput is an implicational system equivalent to the input and, in addition, is an
sm-implicational system. The notion of size and the following notations will be useful for
the proofs of the results hereafter.

The size of an implicational system Σ is defined as ‖Σ‖ = ∑A→B∈Σ(|A|+ |B|), where
|X| represents the cardinality of the set X. Thus, ‖Σ‖ is the amount of attributes that appear
in the antecedents and consequents in the implications in Σ.

Theorem 4. The function Simplify-Mixed given in Algorithm 8 reaches a fixed point Σ′ given
any finite implicational system Σ. In addition, Σ′ ≡ Σ and Σ′ is an sm-implicational system.

Proof. First, note that, after the comparison of a pair of implications (lines 7–22), the size
of {A → B, C → D} does not increase, since there are only three possibilities: (1) no
simplification is made; (2) one or more attributes are removed from the left-hand side or the
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right-hand side of any of the two implications; and (3) one implication is removed at the
cost of adding, at most, one attribute to the other implication (this happens in [RftUnitEq]
and [MixUnUnitEq]). Since the minimum size of a proper implication is one, in all these
three cases, we can guarantee that the size of the system does not increase.

Moreover, if no simplification is made in an iteration over all implications A→ B ∈ Σs,
i.e., the system is not modified in that iteration, then the algorithm stops. Thus, in an
iteration of the repeat loop in lines 2–27, the only two possibilities are (1) the system is
reduced by removing implications or by removing attributes, and (2) the system is not
modified in the iteration. There cannot be infinitely many iterations since the size of the
system is finite and decreases in each iteration. Hence, the algorithm will stop after finitely
many steps.

Let Σ be an implicational system and let Σ′ be the output of Algorithm 8 on Σ. Since
Σ′ is built iteratively by applying equivalence rules, it is obvious that Σ′ ≡ Σ. Let us now
prove that Σ′ is an sm-implicational system. Assume A→ B, C → D ∈ Σ′:

(i) B 6= ∅ and A ∩ B = ∅ follow from the construction of Σ′ in lines 1 and 23–26;
(ii) Let us prove that in Σ′ there cannot be two different implications A→ B and C → D

with A = C. At a given iteration of the algorithm, if two implications verify that their
left-hand sides are equal, they would meet the conditions in line 9, so they will be
merged into a single implication, and, therefore, the algorithm would not reach a fixed
point at that iteration. Hence, in the fixed point Σ′, there cannot be such duplicity
since the implications would have been previously merged;

(iii) A ( C implies C ∩ B = ∅ = D ∩ B: it is a consequence of the application of
[SimpEq]in lines 12–15;

(iv) B 6= MM and A ∩ A = ∅ due to rules [ContEq] and [ContEq′];
(v) If x ∈ A ∩ C and A r x = C r x, then D 6⊆ B. Otherwise, [RedEq] could be applied,

and therefore, Σ′ would not be the fixed point.

Hence, Σ′ is an sm-implicational system.

Note that the only equivalence rules for mixed attributes needed to obtain an sm-
implicational system are [ContEq], [ContEq′] and [RedEq]. The purpose of the rest of
equivalence rules is to further minimize and get an even simpler implicational system.

Let us now show a brief example of the application of Algorithm 8, omitting minor
details for an easier reading.

Example 1. Given Σ = {adb → c, bc → ad, acb → d, ac → bd}, the application of
Simplify-Mixed(Σ) is as follows:

• Firstly, the pair {adb → c, bc → ad} is studied. Using [ContEq′′], we simplify bc → ad
into c→ b. Thus,

{adb→ c, bc→ ad, acb→ d, ac→ bd} ≡ {adb→ c, c→ b, acb→ d, ac→ bd};

• Later, {adb→ c, ac→ bd} satisfies the conditions of [RftUnitEq], so adb→ c is removed.

{adb→ c, c→ b, acb→ d, ac→ bd} ≡ {c→ b, acb→ d, ac→ bd};

• For {c→ b, ac→ bd}, [SimpEq] can be applied, changing ac→ bd into ac→ d:

{c→ b, acb→ d, ac→ bd} ≡ {c→ b, acb→ d, ac→ d};

• When comparing {acb→ d, ac→ d}, [RedEq] can be applied, transforming acb→ d into
ab→ d:

{c→ b, acb→ d, ac→ d} ≡ {c→ b, ab→ d, ac→ d};
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• Now, for {ab → d, ac → d}, [MixUnUnitEq] can also be applied, changing ac → d to
ad→ bc and removing ab→ d:

{c→ b, ab→ d, ac→ d} ≡ {c→ b, ad→ bc};

• At this point, the algorithm has reached a fixed point and returns Σ′ = {c→ b, ad→ bc}.
We can check that the size of Σ is 16, and the size of the sm-implicational system obtained by

Algorithm 8 is 6; that is, we have obtained a size reduction of ≈62.5%.

This example shows that the algorithm can be highly effective in reducing the size of a
system with mixed attributes. In the next section, we will present a thorough experimental
evaluation of the size reduction achieved. We conclude this section by presenting a worst-
case complexity analysis of the algorithm, showing that it has polynomial complexity.

Theorem 5. Let Σ be an implicational system with mixed attributes. The worst-case time complex-
ity of Algorithm 8 on Σ is O(|Σ|2‖Σ‖).

Proof. In every iteration of the algorithm, we remove at least one attribute or one im-
plication. Therefore, the maximum number of iterations of the repeat loop is ‖Σ‖ =
max{|Σ|, ‖Σ‖}, since ‖Σ‖ ≥ |Σ|, for we are considering only proper implications. Further-
more, in each iteration, all possible pairs of implications are studied in order to apply the
equivalence rules, so a maximum ofO(|Σ|2) steps are made in every iteration. In aggregate,
the maximum number of steps is O(|Σ|2‖Σ‖).

It is worth noting that, as ‖Σ‖ ≥ |Σ|, the complexity of Algorithm 8 is polynomial,
O(‖Σ‖3), in the size of the input.

As a related issue, it is important to note that the complexity of the construction of
the canonical basis of implications, as well as of the enumeration of the rules belonging
to this basis, has been studied before by other authors [25–27]. However, such a problem
is different from the one we study in the present work, where we consider a previously
computed system of implications as the input for our method, which, with polynomial
complexity, returns an equivalent simplified system. Moreover, the input system in our
proposal does not have to represent a basis associated with a given formal context.

6. Experimental Results

In order to evaluate the capability of Algorithm 8 for simplifying an implicational
system, a number of random mixed contexts have been generated with different numbers
of attributes in M and different densities (proportion of non-zero elements in the table of
the relation I), and their Duquenne–Guigues bases of implications [28] has been computed.
As these bases are built without using the logic of mixed attributes, it makes sense to use
them as a benchmark for the proposed algorithm.

Contexts were constructed for |M| ∈ {4, 5, . . . , 10} (that is, |MM| ∈ {8, 10, . . . , 20})
and density δ ∈ {0.1, 0.25}. This choice of values for δ is due to two main reasons: on the
one hand, (purely positive) formal contexts in real situations are very sparse, with a very
low proportion of non-zero elements in the table of the relation I; on the other hand, the
apposition of a context K and its associated negative context, K, by construction, always has
density 0.5. Therefore, the choice of δ has no relevance to the complexity of the problem
since, as we have seen in Theorem 5, the main indicators of the complexity of the problem
are the size and the cardinality of the implication basis. Therefore, particular values of
δ typically representative of low densities have been selected. For each combination of
these parameters, 50 contexts have been randomly generated. All experiments have been
performed using the R programming language and the library fcaR [29], particularly for
the generation of the datasets as well as for the computation of the implication bases.

As stated in Section 5, in order to obtain an sm-implicational system, it is enough to
consider [ContEq], [ContEq′]and [RedEq]. For this reason, in the experiment, we have
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compared two different versions of the algorithm: (v1) where only the simplifications
related to the positive attributes, [GenEq]and [SimpEq], as well as the aforementioned
[ContEq], [ContEq′] and [RedEq], are performed; (v2) the simplification algorithm as de-
scribed in Algorithm 8. Thus, (v1) is obtained by removing lines 6 and 10 from Algorithm 5
and lines 17–21 from Algorithm 8. The idea behind this comparison is to check the im-
provement obtained by adding the rest of the equivalence rules.

Hence, for each experiment carried out, the size and the cardinal of the sm-implica-
tional system returned by the simplification algorithm have been measured, both for
version (v1) and (v2). The number of iterations performed by each of the two versions
before reaching the fixed point was also taken into account, as well as the number of
simplifications performed and the calculation time.

In Table 1, we present the averaged results of the execution of the two versions on
the problems generated according to their number of attributes and density. As expected,
whereas the reduction produced by the algorithm version (v1) to obtain sm-implicational
systems ranges from 19% to 74% with respect to the system size, and 2% to 47% with
respect tocardinality, version (v2) provides much more reduced outputs, with a range of
reduction between 73% and 85% with respect size, and between 61% to 79% with respect to
cardinality. Furthermore, it is worth mentioning that, despite the fact that (v2) performs a
greater number of checks, the computation time is, in many occasions, smaller than that
of (v1); the reason is that in (v2), it is possible to perform many more simplifications in
each iteration. This shows that the extra cost of applying the extra equivalence rules pays
off, since we obtain a notably smaller version of the implicational system with shorter
computation times.

Table 1. Data from the experimental evaluation. Columns 3 to 10 express the average value obtained
in the experiments for each of the studied parameters (cardinality, size and execution time).

(v1) (v2)

|M| δ |Σ| ‖Σ‖ |Σ′| ‖Σ′‖ t |Σ′| ‖Σ′‖ t

4 0.1 8.34 45.68 4.40 11.66 0.105 2.68 6.64 0.089
0.25 11.48 55.92 7.52 21.44 0.261 2.96 8.94 0.121

5 0.1 11.50 75.92 6.68 21.86 0.186 3.92 12.14 0.167
0.25 22.86 120.38 17.90 57.02 1.694 6.16 21.08 0.852

6 0.1 15.60 117.22 9.78 34.78 0.435 5.66 19.16 0.335
0.25 38.48 220.18 32.50 111.58 6.299 10.78 40.94 2.771

7 0.1 20.40 171.04 13.64 51.88 0.956 7.36 26.24 0.563
0.25 61.96 379.92 54.96 203.40 20.356 18.68 75.16 9.439

8 0.1 28.04 254.36 20.32 78.56 2.388 10.04 37.56 1.642
0.25 102.84 652.44 94.92 368.56 67.209 33.68 146.44 34.22

9 0.1 35.80 351.10 27.20 108.80 3.319 12.90 51.20 2.596
0.25 149.10 992.20 140.10 571.40 144.114 50.50 232.00 74.970

10 0.1 46.21 486.50 36.40 149.90 7.921 17.60 70.10 5.220
0.25 218.92 1494.20 208.90 891.10 393.850 81.40 393.10 188.461

The study of the relationship between the size and cardinality of the input system and
the size and cardinality of the simplified systems by versions (v1) and (v2) provides the
following results: in Figure 1, we can see the practically linear relationship in the reduction
of both factors. Again, we observe that (v2) presents a lower slope, corroborating the trend
indicated in Table 1. A linear regression has been performed on the data, obtaining

(v1) ‖Σ′‖ ≈ 0.629‖Σ‖ (with R2 = 0.956), and |Σ′| ≈ 0.975|Σ| (with R2 = 0.9992).
(v2) ‖Σ′‖ ≈ 0.249‖Σ‖ (with R2 = 0.967), and |Σ′| ≈ 0.331|Σ| (with R2 = 0.961).
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Figure 1. Comparison of versions (v1) and (v2) with respect to a reduction ratio of ‖Σ‖ (a) and of |Σ|
(b) for all the datasets used in the experiments.

Finally, in Figure 2, we show the execution time of the algorithm for each of the
problems, depending on the size of the input. On the scatterplot, the cubic fit to the data
has been plotted using ‖Σ‖ as the predictor. It can be seen how the theoretical polynomial
fit mentioned in Theorem 5 is also reflected in the experimental evaluation.
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Figure 2. Execution time of versions (v1) and (v2), with cubic adjustment.

Discussion

The topic of attribute reduction and simplification of implicational systems is impor-
tant insofar as it can be considered a preliminary step to other algorithms (computation
of logical closure, generation of direct bases) whose computational complexity depends
directly on the size of the implicational system; however, to the best of our knowledge,
there is no previous algorithm for simplifying implications with mixed attributes and, thus,
our proposal is the first one in this extended framework.

We have presented experimental evidence of the algorithm’s ability to reduce the
size of an implicational system with mixed attributes. Specifically, we have presented
two versions of the algorithm: the first one (v1) simply guarantees the obtainment of an
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sm-implicational system, and the most complete one (v2) obtains more simplified results,
achieving an average reduction of about 75% of the initial system size (see Figure 1), even
with a lower execution time (see Figure 2).

7. Conclusions and Future Work

We have proposed a novel logic-based method able to face the problem of simplifying
implicational systems consisting of positive and negative attributes. This method is based
on the simplification logic for mixed attributes, which provides a sound and complete frame-
work to deal with this type of formal context. Among the contributions of this paper, we
have found a set of logical equivalence rules for mixed attribute implications suitable for
computational implementation and an algorithm to simplify an implicational system with
a polynomial time-complexity. The experimental results show very promising results with
respect to the reduction ratio of the algorithm.

Concerning future work, a thorough study of the minimality properties of sm-implica-
tional systems is needed in order to pursue definitions similar to the different types of bases
for classical implicational systems [19]. This will certainly be a first step on which to build
automated reasoning methods based on simplification logic.

Another interesting direction for future work is the extension of these results with
unknown information, which may be due to the existence of partial information in the data,
or because the context has been obtained by compacting the data, as proposed in [30]. In
this line, we will follow the research line initiated in [31] and consider the formal contexts
as trivalued relations in which a third value representing the unknown is added apart from
the standard positive and negative values.

Extending the work presented here to the case of association rules will require adapta-
tion of the axiomatic system and equivalence properties in order to ensure the correctness
of the scheme and the preservation of the informativeness and completeness properties of a
basis of rules, and this task will be undertaken in future work.

Finally, in this work, we have focused on rules with conjunctive antecedents and
consequents, where both positive and negative attributes appear. However, this is not the
only point of view through which to model the problem of negation. In particular, the use
of disjunctive rules, such as in [32], is of particular interest because of their generality. As
part of our future work, we will explore the relationship of the axiomatic system and the
equivalence rules described under this construction.
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Appendix A. Proofs of the Technical Results

Proof of Theorem 1. [KeyEq] Clearly, {A → B, C → D} ` {A → B}. Let us prove
{A→ B} ` {C → D} under the hypotheses. Assume A ⊆ C and consider x ∈ B ∩ C.
Then:
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(1) A→ B (by hypothesis);
(2) x → x (by [Ref]);
(3) Ax → Bx (by [Comp] on (1) and (2));
(4) C → A (by [GenRef], since A ⊆ C);
(5) C → Ax (by [Comp] with (2) and (4), since x ∈ C, by hypothesis);
(6) C → Bx (by [Simp] on (5) and (3));
(7) B→ x (by [GenRef], since x ∈ B);
(8) Bx → MM (by [Key]on (7));
(9) C → MM (by [Simp] on (6) and (9));

(10) C → D (by [Frag]).

[InKeyEq] Since {A → MM, C → Dx} `S {A → MM, C → D} by [Frag], let us show
that, under the hypotheses, we can infer C → Dx from A→ MM and C → D:

(1) (A r x)x → MM (by hypothesis);
(2) A r x → x (by [InKey] on (1));
(3) C → A r x (by [GenRef] and A r x ⊆ C);
(4) C → x (by [Simp] on (2) and (3));
(5) C → D (by hypothesis;)
(6) C → Dx (by [Comp] on(4) and (5)).

[RedEq] {A→ B, C r x → D} `S {A→ B, C → D} holds since:

(1) C → C r x (by [GenRef]);
(2) C r x → D (by premise);
(3) C → D (by [Simp] on (1) and (2)).

Let us show now that we have {A→ B, C → D} `S {C r x → D}:
(1) C r x → A r x (by hypothesis and [GenRef]);
(2) x → x (by [Ref]);
(3) (C r x)x → (A r x)x (by [Comp] on (1) and (2));
(4) A→ B (by premise);
(5) (C r x)x → B (by [Simp] on (3) and (4));
(6) B→ D (by hypothesis and [GenRef]);
(7) (C r x)x → D (by [Simp] on (5) and (6));
(8) C = (C r x)x → D (by premise);
(9) C r x → D (by [Red] on (7) and (8)).

Proof of Theorem 2. It suffices to show that [Key], [InKey] and [Red] hold in the new
system, since the converse is true by Theorem 1.

[Key] Let us suppose A→ b and show that Ab→ MM:

(1) A→ b (premise);
(2) Ab→ Ab (by [Ref]);
(3) Ab→ MM (by [Key′] on (1) and (2)).

[InKey] Let is suppose Ab→ MM and prove that A→ b:

(1) Ab→ MM (premise);
(2) A→ A (by [Ref]);
(3) A→ Ab (by [InKey′] on (1) and (2));
(4) A→ b (by [Frag]).

[Red] Assuming Ab→ C and Ab→ C, then, by [Red′], we can infer A→ C.

Proof of Lemma 1. [ContEq] We only need to show how to derive A → B from the
axioms. Suppose there is x ∈ A ∩ A, i.e., x, x ∈ A:
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(1) A→ xx (by [GenRef]);
(2) xx → MM (by [Cont]);
(3) A→ MM (by [Simp] on (2) and (3));
(4) A→ B (by [Frag]).

[ContEq′] Firstly note that by [Key] and [InKey] we have {A→ MM} ≡ {A r x → x}
for all x ∈ A. In addition, {A→ MM} ` {A→ B}, so it suffices to show that we can
infer A→ B ` A→ MM. Consider y ∈ AB ∩ B; note that, in particular, y ∈ B ⊆ AB.
Then:

(1) A→ B (premise);
(2) A→ AB (by [Augm] on (1));
(3) A→ yy (by [Frag] on (2));
(4) yy→ MM (by [Cont]);
(5) A→ MM (by [Simp] on (3) and (4)).

[ContEq′′] As with [ContEq′], it now suffices to prove {A → B, C → D} ` C → MM
under the hypotheses. Thus:

(1) CD → A (by [GenRef]);
(2) C → D (premise);
(3) C → A (by [Simp] on (1) and (2));
(4) A→ B (premise);
(5) C → B (by [Simp] on (3) and (4));
(6) C → BCD (by [Comp] on (2) and (5) and C → C);
(7) C → MM (by [ContEq′]).

Proof of Theorem 3.

[KeyEq′] We will prove just the first equivalence, since the second one is obtained by the
application of [Key].

⇒ Assume A→ B and C → D. Since A→ B r y can be obtained by [Frag], we just have
to show how to infer C r y→ y:

(1) (A r x)x → y (by [Frag] on the premise A→ B);
(2) (C r y)x → y (by hypothesis A r x = C r y);
(3) (C r y)y→ x (by [Frag] on the premise C → D);
(4) (C r y)x → y (by [Rft]);
(5) C r y→ y (by [Red] on (2) and (4)).

⇐ Under the hypotheses, suppose A → B r y and C r y → y; let us prove that A → B
and C → D:

(1) A r x → y (by premise and C r y = A r x);
(2) A→ A r x (by [GenRef]);
(3) A→ y (by [Simp] on (1) and (2));
(4) A→ B (by [Comp] of (3) with premise A→ B r y);
(5) (C r y)y→ MM (by [Key] on the second premise);
(6) C → D (by [Frag]).

[KeyEq′′] ⇒ Consider x ∈ C and y ∈ B ∩ D and assume as premises A→ B and C → D.

(1) C → A (by [GenRef]);
(2) A→ B (premise);
(3) C → B (by [Simp] on (1) and (2));
(4) C → BD (by [Comp] on (3) and premise C → D);
(5) C r x → x (by Lemma 1 [ContEq′′], since y, y ∈ BD).

⇐ Now, assuming A→ B and C r x → x, let us prove C → D:

(1) C → MM (by [Key]of second premise);
(2) C → D (by [Frag]).
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[RedEq′] Let us denote S = A r x = C r x, so A = Sx and C = Sx. Then:
{A→ B, C → D} ≡ {A→ B r D, A→ D, C → D} (by [Frag] and [UnEq])

≡ {A→ B r D, Sx → D, Sx → D} (since A = Sx and C = Sx)
≡ {A→ B r D, S = C r x → D} (by [RedEq])

[RftEq] ⇒ Let us show that {A→ B, C → D} ` {A→ B r y, C → Dx}:
(1) A→ B (premise);
(2) C → D (premise);
(3) A→ B r y (by [Frag] on (1));
(4) (A r x)x → y (by [Frag] on (1));
(5) (A r x)y→ x (by [Rft] on (4));
(6) (C r y)y→ x (by hypothesis A r x = C r y);
(7) C → Dx (by [UnEq] on (2) and (6)).

⇐ For the converse:
(1) A→ B r y (premise);
(2) (C r y)y→ x (by [Frag] on the premise C → Dx);
(3) (C r y)x → y (by [Rft] on (2);
(4) (A r x)x → y (by hypothesis A r x = C r y);
(5) A→ B (by [Comp] on (1) and (4));
(1) C → D (by [Frag] on C → Dx).

[RftEq′] ⇒ {A→ B, C → D} `S {A→ B, C → D r x} by [Frag].

⇐ It suffices to show that we can infer C → D from {A→ B, C → D r x}:
(1) A→ B (premise);
(2) C → D r x (premise);
(3) (A r x)x → y (by [Frag] on (1));
(4) (A r x)y→ x (by [Rft] on (3));
(5) C r y→ A r x (by hypothesis and [GenRef]);
(6) (C r y)y→ (A r x)y (by [Augm] on (5));
(7) C → x (by [Simp] on (4) and (6));
(8) C → D (by [UnEq] on (2) and (7)).

[MixUnEq] Let us write S = A r x = C r y. Then:

⇒ Since C → D r b can be obtained by using [Frag], we just need to prove Sb→ xy:

(1) Sx → b (premise);
(2) Sy→ b (by [Frag] on C → D);
(3) Sb→ x (by [Rft] on (1));
(4) Sb→ y (by [Rft] on (2));
(5) Sb→ xy (by [UnEq] on (3) and (4)).

⇐ Assume premises {Sb→ xy, C → D r b} and let us prove A→ b and C → D:

(1) Sb→ x (by [Frag] on first premise);
(2) A→ b (by [Rft] on (1) and Sx = A);
(3) Sb→ y (by [Frag] on first hypothesis);
(4) C → b (by [Rft] on (3) and Sy = B);
(5) C → D r b (second premise);
(1) C → D (by [UnEq] on (4) and (5)).
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