
CONTRIBUTED RESEARCH ARTICLE 341

fcaR, Formal Concept Analysis with R
by Pablo Cordero, Manuel Enciso, Domingo López-Rodríguez, and Ángel Mora

Abstract Formal concept analysis (FCA) is a solid mathematical framework to manage information
based on logic and lattice theory. It defines two explicit representations of the knowledge present in a
dataset as concepts and implications. This paper describes an R package called fcaR that implements
FCA’s core notions and techniques. Additionally, it implements the extension of FCA to fuzzy datasets
and a simplification logic to develop automated reasoning tools. This package is the first to implement
FCA techniques in R. Therefore, emphasis has been put on defining classes and methods that could be
reusable and extensible by the community. Furthermore, the package incorporates an interface with
the arules package, probably the most used package regarding association rules, closely related to
FCA. Finally, we show an application of the use of the package to design a recommender system based
on logic for diagnosis in neurological pathologies.

1 Introduction

The main goal of knowledge retrieval and knowledge discovery systems is to extract hidden patterns,
trends, behaviours, or rules to solve large-impact real-world problems. Usually, these problems present
heterogeneous data sources and are at the core of more general decision processes.

A fundamental principle is that the extracted knowledge should provide some understanding of
the analyzed data. As computational systems get in critical and sensitive areas such as medicine, the
justice system or financial markets, the knowledge becomes much more relevant to make predictions
or recommendations or to detect common interest groups or leaders. However, in many cases, the
inability of humans to understand the extracted patterns seems problematic.

To represent and retrieve knowledge from datasets, it has become more important to use formal
methods based on logic tools. The formal representation of knowledge and the use of logic tools
are more suitable for providing understandable answers. Therefore, it can help avoid the lack of
interpretability and explainability of the results.

In particular, formal concept analysis (FCA) (Wille, 1982; Ganter and Wille, 1999) is a well-founded
mathematical tool, based on lattice theory and logic, which can retrieve and store the knowledge in the
form of concepts (analogous to closed itemsets in transactional databases) and implications (association
rules with confidence 1). From this perspective, FCA constitutes a framework that complements and
extends the study of exact and approximate association rules.

The origins of FCA were devoted to the study of binary datasets (formal contexts) where variables
are called attributes. A relevant extension of FCA uses fuzzy sets (Belohlávek and Vychodil, 2016, 2017)
to model real-world problems since datasets may contain imprecise, graded or vague information that
is not adequately represented as binary values. The fuzzy extension can also model problems with
numerical and categorical attributes since these can be scaled to a truth value describing the degree of
fulfilment of the attribute.

Some authors have considered the use of FCA in machine learning. Kuznetsov (2004) relates
FCA to some mathematical models of machine learning. Ignatov (2017) summarizes the main topics
in machine learning and data mining where FCA has been applied: frequent itemset mining and
association rules to make classification and clustering. A closer approach appears in Trabelsi et al.
(2017), where a method for supervised classification based on FCA is used. The authors extract rules
based on concepts generated previously from data. These rules are used to compute the closure of a
set of attributes to obtain a classification rule.

From a dataset, FCA can establish maximal clusters, named concepts, between objects and at-
tributes. Each cluster consists of objects having common properties (attributes), which are only fulfilled
for these objects. The hierarchy between the concepts and relationships between the attributes (rules
or implications) are computed with the same computational cost in FCA.

Among all the techniques used in other areas to extract knowledge, we emphasize using rules
for its theoretical and practical interest. The notion of if-then rules, with different names, appears in
several areas (databases, machine learning, data mining, formal concept analysis) as a relationship
between attributes, called items, properties or atomic symbols regarding the domain. Nowadays, the
number of rules extracted even from medium-sized datasets is enormous in all these areas. Therefore,
the intelligent manipulation of these rules to reason with them is a hot topic to be explored.

In this direction, Cordero et al. (2002) introduced a logic, named simplification logic for functional
dependencies (SLFD), firmly based on a simplification rule, which allows us to narrow the functional
dependency set by removing redundant attributes. Although the semantic of implications or if-then

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fcaR
https://CRAN.R-project.org/package=arules

CONTRIBUTED RESEARCH ARTICLE 342

P1 P2 P3 P4

O1 0 1⁄2 1⁄2 1⁄2
O2 1⁄2 1 0 1
O3 1⁄2 1 0 1
O4 0 1⁄2 1 1⁄2

Table 1: A sample formal context. The attributes are P1 to P4 and the objects are named O1 to O4.

rules in other areas are different, the logic can be used too.

Using directly SLFD, some automated deduction methods directly based on this inference system
have been developed for classical systems and fuzzy systems (Mora et al., 2003; Cordero et al., 2012;
Mora et al., 2012; Rodríguez Lorenzo et al., 2014, 2015).

In the fuzzy framework, several approaches to the definition of fuzzy implications (functional
dependencies, rules) are proposed in the literature, see Jezková et al. (2017) for a survey. Our work
considers that the definition of graded implication proposed by Belohlávek and Vychodil (2016, 2017)
generalizes all the previous definitions. Furthermore, for this general definition of graded implications,
an axiomatic system named FASL (fuzzy attribute simplification logic) was developed by Belohlávek
et al. (2016), becoming a helpful reasoning tool. Note that FASL is a generalization of SLFD to the
fuzzy framework.

The core of our proposal is to provide a user-friendly computational interface to the principal
operators and methods of fuzzy FCA, including the mentioned logic tools. This interface is easy
to extend to new functionalities and incorporate new methods, such as minimal generators or the
computation of different implication bases quickly. The operators and methods implemented are
designed to work in the general fuzzy setting, but they are also applicable in the classical binary case.

Thus, the focus of our proposal, the fcaR package, is to provide easy access to formal methods
to extract all the implicit knowledge in a dataset in the form of concepts and implications, working
natively with fuzzy sets and fuzzy implications. Our goal is to provide a unified computational
framework for the theoretically-oriented FCA users to develop, test, and compare new methods and
knowledge extraction strategies.

Other objectives of this work include presenting an FCA-based tool for knowledge discovery
accessible to other scientific communities, allowing for the development of new packages in other
fields using FCA techniques, especially in the construction of recommendation systems.

The work is organized as follows: Section Background on FCA begins with a brief look of FCA
and Simplification Logic. Section Related works presents other software libraries that implement FCA
or related paradigms’ core notions. In Section Package design, an explanation of the data structures,
classes and constructor methods is covered. Section Formal concept analysis with fcaR shows how to
use the package, describing the implemented FCA methods and the use of the simplification logic.
In Section Usage example. Fuzzy diagnostic system, a real application of the package in developing
a recommender system is illustrated. Finally, some conclusions and future works are presented in
Section Conclusions and future work.

2 Background on FCA

In this section, we present the basic notions in the FCA framework using a running example (see
Table 1). Note that the package incorporates the main methods in FCA that appear in this summary.
Since the formal study of FCA is not the main scope of this work, we recommend the reference (Ganter
and Obiedkov, 2016) for further details of this framework.

A formal context is a triple (G, M, I), where G is a set of objects, M is a set of attributes and I is a
fuzzy relation between objects and attributes, where I(x, y) ∈ [0, 1] means the truth value to which
object x possesses attribute y, indicating I(x, y) = 0 the absence of attribute or property y in object x.

The meaning of each entry in the table is the extent to which an object possesses the attribute in
the corresponding column. In the example shown in Table 1, the object named O4 fully possesses
attribute P3 and possesses P2 and P4 only to degree 50%.

In the remaining of this paper, we will use the notation d/a to indicate the presence of attribute a
with degree d.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 343

({O1, O2, O3, O4} ,
{
0.5/P2, 0.5/P4

})

({O1, O4} ,
{
0.5/P2, 0.5/P3, 0.5/P4

})

({
0.5/O1, O4

}
,
{
0.5/P2, P3, 0.5/P4

})

({
0.5/O1, O2, O3, 0.5/O4

}
, {P2, P4})

({
0.5/O1, 0.5/O4

}
, {P2, P3, P4})

({O2, O3} ,
{
0.5/P1, P2, P4

})

({
0.5/O2, 0.5/O3

}
, {P1, P2, P4})

(∅, {P1, P2, P3, P4})

Figure 1: Concept lattice for the context in Table 1. Arrows indicate the direction of the order
relationship between concepts.

Derivation operators

Given a fuzzy set of objects S , we can compute its intent as the set of attributes that are shared by all
objects in S . Analogously, we define the extent of a set T of attributes as the set of objects which have
all the attributes in T .

In the above example, for S ={O1, O2}, we have intent(S) =
{0.5/P2, 0.5/P4

}
because I(O1, P2) =

0.5, I(O1, P4) = 0.5, I(O2, P2) = 1 and I(O2, P4) = 1.

The operator ϕ defined by ϕ(T) = intent(extent(T)) is a closure operator and a set of attributes
T is called closed if T = ϕ(T). In our example, ϕ(

{0.5/P1
}
) =

{0.5/P1, P2, P4
}

, meaning that every
object that has P1 with degree at least 0.5, also has all the attributes {P2, P4}. When T is closed, the
pair (extent(T), T) is called a concept .

In general, a concept (A, B), where A is a set of objects, and B is a set of attributes, means that
the only attributes shared by all objects in A are those in B, and the only objects having all attributes
in B are those in A. This property makes (A, B) a maximal rectangular cluster in the dataset, with a
strong dependence between the objects in A and the attributes in B. In the formal context represented
in Table 1, the pair

(
{O2, O3} ,

{0.5/P1, P2, P4
})

is a concept, because extent(
{0.5/P1, P2, P4

}
) =

{O2, O3} and intent({O2, O3}) =
{0.5/P1, P2, P4

}
, i.e. a fixpoint is achieved.

In FCA, using these derivation operators, two operations can be used to reduce a formal context:

• Clarification , which is the removal of duplicated rows (objects) and columns (attributes) of the
formal context since duplicates do not contribute knowledge to the context.

• Reduction , which removes attributes that can be expressed as the closure of other attributes.

These two operations remove redundancies in the formal context without affecting the knowledge
contained in it. Many of the subsequent operations in FCA have high computational complexity, and
clarifying and reducing a formal context may reduce the computational time of posterior operations.

The concept lattice

The concept lattice of a formal context is the set of all concepts, with the partial order ≤ defined as
follows: for two concepts (A1, B1) and (A2, B2), we say that (A1, B1) ≤ (A2, B2) if and only if A1 ⊆
A2 ⇐⇒ B2 ⊆ B1. For instance,

({0.5/O2, 0.5/O3
}

, {P1, P2, P4}
)
≤

(
{O2, O3} ,

{0.5/P1, P2, P4
})

,
since their intents verify

{0.5/P1, P2, P4
}
⊆ {P1, P2, P4}.

This order (or precedence) relationship induces a hierarchy of concepts, which can be graphically
represented in the Hasse diagram (Birkhoff, 1940) of the partially ordered set of concepts. In Figure 1,
we find the Hasse diagram corresponding to our running example.

From the concept lattice and the order relationship, we can define notions as subconcept , super-
concept , infimum and supremum of a set of concepts.

Notably, there are the irreducible elements , for the infimum (meet) or the supremum (join) oper-
ators, which, in the lattice, are shown as those elements with only one arrow departing or arriving
at them, respectively. These elements are essential since one can reconstruct the whole lattice by
operating with these elements.

The standard context for a given formal context K is another formal context (J ,M,≤), where J
and M are the sets of join- and meet-irreducible elements of K and ≤ is the partial order defined in
the concept lattice. This standard context has a concept lattice isomorphic to that of K.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 344

Implications and logic

The knowledge stored in a formal context can also be represented as a set of implications, which are
expressions of the form A ⇒ B where A and B are sets of attributes or items, indicating that, for every
object in which the set of attributes A is present, also B is present. This interpretation is similar to the
one defined in data mining/machine learning over the so-named association rules. The confidence (a
well-known estimator of the rules’ quality) has value 1 in all the implications.

For instance
{0.5/P1

}
⇒ {P4} is a valid implication in the previous example, having the following

interpretation: when the attribute P1 has degree at least 0.5 then we have P4 with degree 1.

The Duquenne-Guigues basis of implications (Guigues and Duquenne, 1986) is a set of valid
implications from which all other valid implications can be deduced. The Duquenne-Guigues basis in
our example is given by:

1: ∅ ⇒
{0.5/P2, 0.5/P4

}

2:
{0.5/P2, P4

}
⇒ {P2}

3:
{

P2, 0.5/P4
}

⇒ {P4}
4:

{
P2, 0.5/P3, P4

}
⇒ {P3}

5:
{0.5/P1, 0.5/P2, 0.5/P4

}
⇒ {P2, P4}

6:
{0.5/P1, P2, P3, P4

}
⇒ {P1}

In Cordero et al. (2002), the simplification logic, denoted as SLFD, was introduced as a method
to manipulate implications (functional dependencies or if-then rules), removing redundancies or
computing closures of attributes. This logic is equivalent to Armstrong’s Axioms (Armstrong, 1974),
which are well known from the 80s in databases, artificial intelligence, formal concept analysis, and
others. The axiomatic system of this logic considers reflexivity as the axiom scheme

[Ref]
A ⊇ B
A ⇒ B

together with the following inference rules called fragmentation, composition and simplification,
respectively, which are equivalent to the classical Armstrong’s axioms of augmentation and, more
importantly, transitivity.

[Frag]
A ⇒ B ∪ C

A ⇒ B
[Comp]

A ⇒ B, C ⇒ D
A ∪ C ⇒ B ∪ D

[Simp]
A ⇒ B, C ⇒ D

A ∪ (C ∖ B) ⇒ (D ∖ B)

The main advantage of SLFD with respect to Armstrong’s Axioms is that the inference rules may be
considered as equivalence rules, (see the work by Mora et al. (2012) for further details and proofs), that
is, given a set of implications Σ, the application of the equivalences transforms it into an equivalent
set. In the package presented in this paper, we develop the following equivalences:

1. Fragmentation Equivalency [FrEq]: {A ⇒ B} ≡ {A ⇒ B ∖ A}.

2. Composition Equivalency [CoEq]: {A ⇒ B, A ⇒ C} ≡ {A ⇒ B∪C}.

3. Simplification Equivalency [SiEq]: If A ⊆ C, then

{A ⇒ B, C ⇒ D} ≡ {A ⇒ B, A ∪ (C ∖ B) ⇒ D ∖ B}
4. Right-Simplification Equivalency [rSiEq]: If A ⊆ D, then

{A ⇒ B, C ⇒ B ∪ D} ≡ {A ⇒ B, C ⇒ D}

Usually, many areas, the implications have always atomic attributes on the right-hand side. We
emphasize that this logic can manage aggregated implications, i.e. the implications’ consequents do not
have to be singletons. This represents an increase of the logic efficiency.

This logic removes attribute redundancies in some of the implications in the Duquenne-Guigues
basis presented before. Particularly, the implications with numbers 2, 3, 4, 5 and 6 are simplified to:

2: {P4} ⇒ {P2}
3: {P2} ⇒ {P4}
4:

{0.5/P3, P4
}

⇒ {P3}
5:

{0.5/P1
}

⇒ {P4}
6:

{0.5/P1, P3
}

⇒ {P1}

One of the primary uses of a set of implications is computing the closure of a set of attributes, the
maximal fuzzy set that we can arrive at from these attributes using the given implications.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 345

The importance of computing the closure from implications is because implications can be managed
using logic tools. They formally describe the knowledge existing in the dataset; thus, the user can
forget about the original dataset. In this sense, it is similar to supervised Machine Learning techniques.

The algorithm to compute the closure (Mora et al., 2012) is based on the classical CLOSURE
algorithm (Maier, 1983; Ganter and Obiedkov, 2016). After each pass over the set of implications,
instead of simply removing the implications used in the step, the simplification rule substitutes the
implications by others equivalent but simpler, with fewer attributes. In the binary case, the reduced
set of implications does not reference any attribute in the computed closure. A detailed description of
the procedure is presented in Algorithm 1.

Algorithm 1: SLFD closure
Input : X: attribute set; Γ: set of implications
Output : X+: the closure of X with respect to Γ; Γ′: the simplified set of implications

Γ′ := Γ ∪ {∅ ⇒ X}
Xnew := X
Xold := X
repeat

Replace {∅ ⇒ Xold} with {∅ ⇒ Xnew} in Γ′

Xold = Xnew
for each A ⇒ B ∈ Γ′ \ {∅ ⇒ Xnew} do

if A ⊆ Xnew then
Replace {∅ ⇒ Xnew} with {∅ ⇒ Xnew ∪ B}
Xnew := Xnew ∪ B

end
if B ⊆ Xnew then

Remove A ⇒ B from Γ′

end
if A ∩ Xnew ̸= ∅ or B ∩ Xnew ̸= ∅ then

Replace A ⇒ B with A \ Xnew ⇒ B \ Xnew
end

end
until Xold = Xnew
return X+ and Γ′

For instance, the closure of S =
{0.5/P2

}
with this algorithm is S+ =

{0.5/P2, 0.5/P4
}

(this means
that all objects that have all the attributes in S, also have those in S+). The simplification logic leads us
to a reduced set of implications Γ′:

1: {P4} ⇒ {P2}
2: {P2} ⇒ {P4}
3:

{
P2, 0.5/P3, P4

}
⇒ {P3}

4:
{0.5/P1

}
⇒ {P2, P4}

5:
{0.5/P1, P2, P3, P4

}
⇒ {P1}

One can interpret these implications as the knowledge in the original implications if the attributes
in S are not considered (formally, this is equivalent to suppose that ∅ ⇒ S is true). In the example, if,
in addition to having

{0.5/P2
}

, we have {P1} with degree 0.5, we can infer that {P2} and {P4} are
fully present, by implication number 4.

3 Related works

The package presented in this paper has been developed in the R language. In recent years, R has
lived a remarkable revolution caused in part by an increasing user community from many different
scientific fields. This has led to the development of reproducible research tools, e.g., rmarkdown (Xie
et al., 2018), and tools to connect and interact with other programming languages, with packages like
Rcpp (Eddelbuettel and François, 2011) or reticulate (Ushey et al., 2020). Besides, the development of
a game-changer programming paradigm with tidy principles has provided a significant impact on R’s
usability, see the tidyverse of Wickham et al. (2019).

These facts have transformed R from a purely statistical language into one of the most popular
languages in data science, machine learning, data mining or visualization. In R, there are multiple
packages to perform data mining and machine learning tasks. However, only a few of them are

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=tidyverse

CONTRIBUTED RESEARCH ARTICLE 346

ToscanaJ ConExp conexp-clj Galicia GALACTIC arules RKEEL frbs fcaR
Programming language Java Java Clojure Java Python R R R R
Context operations × × × × ×
Context visualization × × × × ×
Lattice computation × × × × ×
Lattice operations × × × × × ×
Lattice visualization × × × × × ×
Implication basis computation × × × ×
Association rules computation × × × × × × (1) (2)
Closure operators × × ×
Use of logic tools ×
Native fuzzy sets (3) (3) ×

Table 2: Functionality comparison among different software libraries for FCA. (1) The rules can be
used only for classification or regression; (2) fcaR is integrated with arules to import and export exact
association rules; (3) some packages do not use natively fuzzy sets as representation, but use scaled or
discretized contexts.

focused on formal methods that can model and extract knowledge in the form of implications and
rules on fuzzy sets and operate on them using logic tools.

The arules package by Hahsler et al. (2005) provides the infrastructure for representing, manipu-
lating and analyzing transaction data and patterns (frequent itemsets and association rules) in binary
settings. The frbs package (Riza et al., 2015) presents an implementation of various learning algorithms
based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression tasks. The
RKEEL package (Moyano and Sanchez Ramos, 2016) is an R interface to KEEL, a popular Java software
for a large number of different knowledge data discovery tasks. It can extract association rules from
numerical datasets, but variables are discretized or categorized first.

It must be noted that none of the previous approaches uses logic tools to infer knowledge from
the extracted rules and implications. Also, the support for fuzzy sets is minimal, and none of them
implements the core notions of FCA.

Since the arules package has become a de facto standard, one of the critical points in our proposal’s
design has been to get fcaR easily integrated with arules.

In other programming languages, several libraries are implementing FCA methods. Some of the
most used libraries are focused on computing the concept lattice and provide a graphical interface
to operate with the formal context and the concept lattice: ToscanaJ (Becker and Correia, 2005) and
Galicia (Valtchev et al., 2003). Other tools, such as Concept Explorer (ConExp) (Yevtushenko, 2000),
with its new versions ConExp NG and ConExp FX, besides their graphical capabilities, implement
the core FCA algorithms and operations: context editing, building concept lattices, finding bases of
implications and association rules, for instance.

The two most recent and fully-featured libraries are conexp-clj (Hanika and Hirth, 2019) and
GALACTIC (Demko and Bertet, 2020), focusing on their extensibility and addition of multiple new
algorithms, including the implementation of closure operators and methods based on implications.

In Table 2, we present a comparison of the main features present in each of these libraries.

In conclusion, fcaR can be considered among the general-purpose FCA tools with a more compre-
hensive feature list, integrating the core notions of FCA and logic tools.

4 Package design

In this section, we present the design principles and implementation information about the fcaR
package: the use of object-oriented programming, the need to be integrated with the arules package,
and its use in reproducible research.

Package availability

This package is available in CRAN and can be installed using install.packages('fcaR'). Also, the
development version with new features and bugfixes can be installed from GitHub using
remotes::install_github('Malaga-FCA-group/fcaR').

All the documentation in the form of a pkgdown site can be found in https://malaga-fca-
group.github.io/fcaR/.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=RKEEL
https://CRAN.R-project.org/package=frbs
https://CRAN.R-project.org/package=fcaR
https://CRAN.R-project.org/package=frbs
https://CRAN.R-project.org/package=RKEEL
https://malaga-fca-group.github.io/fcaR/
https://malaga-fca-group.github.io/fcaR/

CONTRIBUTED RESEARCH ARTICLE 347

Class name Use

"Set" A basic class to store a fuzzy set using sparse matrices
"Concept" A pair of sets (extent, intent) forming a concept for a given formal context
"ConceptLattice" A set of concepts with their hierarchical relationship. It provides methods to compute

notable elements, sublattices and plot the lattice graph
"ImplicationSet" A set of implications, with functions to apply logic and compute closure of attribute

sets
"FormalContext" It stores a formal context, given by a table, and provides functions to use derivation

operators, simplify the context, compute the concept lattice and the Duquenne-Guigues
basis of implications

Table 3: Main classes found in fcaR.

Data structures

Now, we present an overview of the data structures implemented in fcaR and the design principles
on which the development of the package has been based. The main points are the R6 (Chang, 2020)
object-oriented programming (OOP) paradigm and the extensive use of sparse matrices for internal
storage of objects.

The R6 OOP paradigm is being increasingly used in the R ecosystem since its ability to encapsulate
data structures and methods related to each class in a single and straightforward interface exposed to
the user. This reason and its extensibility have made it the choice to implement the data structures in
this package.

The core of the fcaR package provides data structures that allow the user to work seamlessly with
formal contexts and sets of concepts and implications. The main classes are presented in Table 3. Let
us briefly describe the internal representation of the main object classes.

Formal contexts

A formal context (G, M, I) can be represented by a two-way table I indicating the relationship between
objects and attributes. This table is expressed in matrix form in R, with rows corresponding to objects
and columns corresponding to attributes.

In the classical setting, as occurred in the arules package, a formal context may represent a
collection of itemsets which conform to a transactions database. In such a setting, the matrix is binary,
and each of its entries represents the presence (1) or absence (0) of an item in a particular itemset. A
value of 1 in the matrix is interpreted as the object fully possessing the associated attribute.

In this package, one of the main features is dealing with fuzzy or graded attributes. Therefore I is
not a binary matrix anymore, but a numerical matrix with entries in the interval [0, 1]. We emphasize
that our package can deal with binary datasets as a particular case of the fuzzy case. Most of the
methods implemented work for binary and fuzzy Formal Concept Analysis.

The R6 class "FormalContext" stores the relationship matrix (or incidence matrix, if binary) I in
a compressed sparse format, given by class "dgCMatrix" from package Matrix (Bates and Maechler,
2021). The reason to store I as a sparse matrix is that, in practice, most situations will occur with
many objects, and only a few attributes present for each object. This allows for greater computational
efficiency.

The main methods applicable to an object of the "FormalContext" class are presented in Table 4.

The features of the R6 paradigm allow us to build another critical aspect of a "FormalContext": it
stores both the associated "ConceptLattice" and the Duquenne-Guigues basis as an "ImplicationSet",
which can be accessed using fc$concepts and fc$implications, respectively. Initially, these instances
are empty (no concepts nor implications are included), and they are filled with the corresponding data
as needed.

Concept lattices

A "ConceptLattice" object is usually built from a "FormalContext" or by using some specific methods
on an existing "ConceptLattice". Thus, although it has a constructor method, the user will not likely
use it to create an instance of this class.

Internally, the "ConceptLattice" class stores three sparse matrices: two for the extents and intents
in matrix form (rows are objects/attributes and columns represent concepts) and a sparse matrix
indicating the order relationship between concepts. The element (i, j) of this matrix is 1 if and only if

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE 348

Method name Purpose

new(I) Constructor for the "FormalContext" class. I can be a "matrix", a "data.frame"
or a filename from where to import the context

intent(S) Computes the intent of a set S of objects
extent(S) Computes the extent of a set S of attributes
closure(S) Computes the closure of a set S of attributes
clarify() Performs clarification of a "FormalContext"
reduce() Performs reduction of a "FormalContext"
standardize() Builds the standard context (J ,M,≤) for the given "FormalContext"
find_concepts() Builds the concept lattice following the NextClosure algorithm for fuzzy formal

contexts
find_implications() Uses the modified NextClosure for fuzzy formal contexts to compute the concept

lattice and the Duquenne-Guigues basis of implications
to_transactions() Converts the formal context to an object of class "transactions" from the arules

package

Table 4: Main methods of the "FormalContext" class.

the i-th concept is a subconcept of the j-th concept, otherwise it is 0.

The main methods of objects of the "ConceptLattice" class are summarized in Table 5.

Method name Purpose

new(A,B) Constructor for the "ConceptLattice" class. A and B are the extents and intents
of the concepts

intents() Retrieves the intents of all the concepts
extents() Retrieves the extents of all the concepts
sublattice(C) Computes the smallest sublattice that includes all concepts in the concept set C
meet_irreducibles(),
join_irreducibles()

Compute the meet-irreducible and join-irreducible elements of the lattice

decompose(C) Decomposes the concept C as the supremum of meet-irreducible concepts
supremum(C), infimum(C) Compute the supremum or infimum of a set C of concepts
subconcepts(C),
superconcepts(C)

Compute the subconcepts and superconcepts of a concept C

lower_neighbours(C),
upper_neighbours(C)

For a given concept C, compute its lower and upper neighbours in the lattice

Table 5: Main methods of the "ConceptLattice" class.

Implication sets

There are two ways in which an "ImplicationSet" can be created: by finding the implications of a
given "FormalContext" or by importing a "rules" object from the arules package.

In both cases, internally, an "ImplicationSet" object is composed of two sparse matrices, lhs_matrix
and rhs_matrix, representing the left-hand and right-hand sides (LHS and RHS, respectively) of the
computed implications. As it is the default in Matrix, these matrices are stored column-wise, such that
column j represents the j-th implication in the set, and row i stands for the i-th attribute.

The main methods applicable to an object of class "ImplicationSet" are described in Table 6.

Method name Purpose

new(A,B) Constructor of the "ImplicationSet" class. A and B represent the left-hand
and right-hand sides of the implications

add(P) Concatenates the implications in the current set with those in P
closure(S) Computes the closure of the attribute set S with respect to the current implica-

tion set, applying the SLFD logic
recommend(S,attr) Computes the closure of S and filters it to show only the attributes in attr
apply_rules(rules) Transforms the "ImplicationSet" into another using equivalence rules
to_basis() Transforms the "ImplicationSet" to an equivalent basis of implications
filter(lhs,rhs) Filters the "ImplicationSet" to retrieve only implications with specific at-

tributes in the left-hand or in the right-hand sides
to_arules() Converts a binary "ImplicationSet" to the "rules" class of arules

Table 6: Main methods of the "ImplicationSet" class.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 349

Interfacing with arules

One of the main design objectives in this package is interoperability with the arules package since it
can be considered a standard in the field.

The constructor methods for the "FormalContext" and "ImplicationSet" classes allow as inputs
objects of types "transactions and "rules", respectively, from the arules package.

A "transactions" object in arules can be represented by a binary formal context. Each transaction
can be translated into one object as defined in FCA. In contrast, different transaction items are mapped
to binary variables according to whether the item is present or not in the transaction. Any object of
type "transactions" can be used to initialize a "FormalContext", assigning the labels of the items
present in the transaction database to the attributes’ names in the context, and using the "itemMatrix" as
the internal representation of the binary incidence matrix. Also, fcaR can export the "FormalContext"
to the "transactions" format, by using the to_transactions() method of a binary "FormalContext".

Analogously, a "rules" object can be used to create a "ImplicationSet". The LHS and RHS of the
"rules" object are mapped to the lhs_matrix and rhs_matrix of the "ImplicationSet". In addition,
the method to_arules() can be used to convert any binary "ImplicationSet" to the "rules" format.

These interfaces allow the users who usually work in other areas with arules to use FCA methods
and algorithms for transactions databases, as an extension of what can do in arules, and then, if
necessary, to convert back to the arules format.

Use for reproducible research

Another of the design goals of the fcaR package is that it could be used in research and used in publica-
tions. All the implemented classes in fcaR provide a to_latex() function so that concepts, implications
and the table of the formal context can be easily exported to LATEX. Also, the "FormalContext" and
"ConceptLattice" classes have a plot() method that allows to graphically represent that object types.
This plot() function allows to export the graphs in LATEX format to be included directly in PDF reports
with publication quality (see the Figures in this work).

All this document has been written using the Rmarkdown format using these functions to generate
the tables and listings of concepts and implications. The only required LATEX packages are amssymb (for
some mathematical symbols), longtable and caption (for the listings of concepts and implications)
and tikz (for plotting formal contexts and concept lattices).

5 Formal concept analysis with fcaR

In this Section, we will show how to perform the basic operations mentioned in Section Background
on FCA. We will use the same formal context shown in Table 1.

Let us suppose that the variable ‘I’ stores the matrix corresponding to that formal context. To
create a new "FormalContext" with that matrix, the command is fc <- FormalContext$new(I). Now,
the object fc stores the formal context and enables us to perform the corresponding operations on it.

For example, we can access the attribute and object names with fc$attributes and fc$objects,
respectively. We can even plot a heatmap (see Fig. 2) to show the sparsity of the context, very useful
for large contexts.

Derivation operators

The methods that implement the derivation operators are named after them: intent(), extent()
and closure(). They can be applied on objects of type "Set", representing fuzzy sets of objects or
attributes:

> S <- Set$new(fc$objects, O1 = 1, O2 = 1)
> S
{O1, O2}
> fc$intent(S)
{P2 [0.5], P4 [0.5]}
> T <- Set$new(fc$attributes, P1 = 1, P3 = 1)
> T
{P1, P3}
> fc$extent(T)
{}

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 350

P
1

P
2

P
3

P
4

O1

O2

O3

O4

Figure 2: The heatmap representing the formal context shown in Table 1, obtained by doing fc$plot().
A grey scale is used, where white indicates the value 0 for an object-attribute pair, while black indicates
the value 1, with the greys representing the intermediate values. This type of graph aids visual
inspection of the context, being able to check its sparsity, density or possible patterns.

> fc$closure(T)
{P1, P2, P3, P4}

In addition, we can perform clarification on the formal context, by using fc$clarify(), giving:

FormalContext with 3 objects and 3 attributes.
P1 P3 [P2, P4]

O1 0 0.5 0.5
O4 0 1 0.5

[O2, O3] 0.5 0 1

The duplicated rows and columns in the formal context have been collapsed, and the corresponding
attributes and objects’ names are grouped together between brackets, e.g., [P2, P4].

Concept lattice

The command to compute the concept lattice for a "FormalContext" fc is fc$find_concepts(). The
lattice is stored in fc$concepts, which is of the "ConceptLattice" class.

> fc$concepts
A set of 8 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
5: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
6: ({O2, O3}, {P1 [0.5], P2, P4})
7: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
8: ({}, {P1, P2, P3, P4})

In order to know the cardinality of the set of concepts (that is, the number of concepts), we can
use fc$concepts$size(), which gives 8 in this case. The complete list of concepts can be printed
with fc$concepts$print(), or simply fc$concepts. Also, they can be translated to LATEX using the
to_latex() method, as mentioned before.

The typical subsetting operation in R with brackets is implemented to select specific concepts from
the lattice, giving their indexes or a boolean vector indicating which concepts to keep. The same rules
for subsetting as in R base apply:

> fc$concepts[c(1:3, 5, 8)]
A set of 5 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
5: ({}, {P1, P2, P3, P4})

In addition, the user can compute concepts’ support (the proportion of objects whose set of
attributes contains the intent of a given concept) by means of fc$concepts$support().

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 351

> fc$concepts$support()
[1] 1.00 0.50 0.25 0.50 0.00 0.50 0.00 0.00

Sublattices

When the concept lattice is too large, it can be useful to work with a sublattice of the complete lattice
on certain occasions. To this end, we use the sublattice() function.

For instance, to build the sublattice generated by the concepts
({0.5/O1, 0.5/O4

}
, {P2, P3, P4}

)

and
(
{O2, O3} ,

{0.5/P1, P2, P4
})

, which had indexes 5 and 6 in the list of concepts, we can do:

> fc$concepts$sublattice(5:6)
A set of 4 concepts:
1: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
2: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
3: ({O2, O3}, {P1 [0.5], P2, P4})
4: ({}, {P1, P2, P3, P4})

Some interesting sublattices appear when we consider only concepts fulfilling a given condition
(e.g., a minimum support), using a command such as fc$concepts$sublattice(fc$concepts$support()
> 0.5).

Subconcepts, superconcepts, infimum and supremum

For a given concept (A, B), we can find all its subconcepts ((Ci, Di) such that (Ci, Di) ≤ (A, B))
by using the subconcepts() functions. Analogously, the superconcepts() function can be used to
compute the set of (Ci, Di) such that (A, B) ≤ (Ci, Di).

For instance, if we take a sample concept L =
({0.5/O1, O2, O3, 0.5/O4

}
, {P2, P4}

)
, we can

compute its subconcepts and superconcepts using:

> fc$concepts$subconcepts(L)
A set of 5 concepts:
1: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
2: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
3: ({O2, O3}, {P1 [0.5], P2, P4})
4: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
5: ({}, {P1, P2, P3, P4})
> fc$concepts$superconcepts(L)
A set of 2 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})

Also, we can define the infimum and the supremum of a set of concepts as the greatest common
subconcept and the lowest common superconcept of all the given concepts, respectively. For a list of
concepts, we can compute its infimum and supremum using the supremum() and infimum() methods
of the "ConceptLattice" object. Additionally, irreducible elements in the lattice, with respect to join
(supremum) and meet (infimum), can be computed for a given concept lattice with the methods
join_irreducibles() and meet_irreducibles().

> fc$concepts$meet_irreducibles()
A set of 5 concepts:
1: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
2: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
3: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
4: ({O2, O3}, {P1 [0.5], P2, P4})
5: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
> fc$concepts$join_irreducibles()
A set of 5 concepts:
1: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
2: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
3: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
4: ({O2, O3}, {P1 [0.5], P2, P4})
5: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})

These irreducible elements are essential since they constitute the basic elements with which the
entire concept lattice can be reconstructed.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 352

M1 M2 M3 M4 M5

J1 ×
J2 × ×
J3 × × ×
J4 × ×
J5 × × ×

({J1, J2, J3, J4, J5} , ∅)

({J3, J4, J5} , {M3})

({J4, J5} , {M3, M4})

({J5} , {M3, M4, M5})

({J1, J2, J3} , {M1})

({J2, J3} , {M1, M2})

({J3} , {M1, M2, M3})

(∅, {M1, M2, M3, M4, M5})

Table 7: Left: Standard context associated to the context in Table 1; M1 to M5 refer to the meet-
irreducible elements of the formal context, and J1 to J5, to the join-irreducible ones. Right: concept
lattice of the standard context, isomorphic to the one in Figure 1.

The standard context

The standard context has a concept lattice that is isomorphic to the one of the original context, so it
encapsulates the same knowledge. With fcaR one can directly compute the standard context by using
the standardize() function, for example, using fc_std <- fc$standardize() to save the new context
to another variable.

This is a method that applies to a "FormalContext" object, but is closely related to its associated
"ConceptLattice", since the objects and attributes of the newly created standard context are the meet-
and join- irreducible elements of the concept lattice.

The standard context for the example in Table 1 and its corresponding lattice are shown in Table 7.

Implications and logic

As mentioned earlier, a core problem in FCA is the computation of implications that hold in a formal
context. The iterative fuzzy version of NEXTCLOSURE has been implemented in C and made accessible
from fcaR thanks to an interface using Rcpp. As we have said, our package can manage classical
implications from binary datasets. In order to build the Duquenne-Guigues basis of implications,
by using the NEXTCLOSURE algorithm, the command fc$find_implications() is executed, and the
result is stored in fc$implications.

The set of implications is stored as an object of class "ImplicationSet", which can be inspected
with the print() method or simply with fc$implications. In order to get a subset of the implications
by providing its indexes, the standard R subsetting with ‘[’ will create another "ImplicationSet"
with exactly the rules required. For instance, fc$implications[1:3] gives:

Implication set with 3 implications.
Rule 1: {} -> {P2 [0.5], P4 [0.5]}
Rule 2: {P2 [0.5], P4} -> {P2}
Rule 3: {P2, P4 [0.5]} -> {P4}

These implications can be converted to LATEX using the to_latex() method, giving:

1: ∅ ⇒
{0.5/P2, 0.5/P4

}

2:
{0.5/P2, P4

}
⇒ {P2}

3:
{

P2, 0.5/P4
}

⇒ {P4}

On the other hand, one can filter() the implications to retrieve just those with specific attributes
in the LHS and RHS. As before, the method returns a new "ImplicationSet" object. For example, to
get the implications with attributes P1 and P2 in the LHS and attribute P4 in the RHS, the user can
execute fc$implications$filter(lhs = c('P1', 'P2'), rhs = 'P4').

Some quantities can be computed from a set of implications:

• Cardinality , that is, the number of implications, with fc$implications$cardinality().
• Size , which is the cardinality of the LHS and RHS of each implication, interpreted as fuzzy sets

(thus non-integer sizes can appear): fc$implications$size().
• Support , the proportion of objects in the formal context whose set of attributes is a superset of

the LHS of each implication: fc$implications$support().

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 353

Application of the simplification logic

In fcaR, the simplification logic has been implemented and made accessible from an "ImplicationSet"
object through method apply_rules.

The list of equivalence rules applicable to an "ImplicationSet" is stored in a registry object from
the registry package by Meyer (2019).

This registry is called equivalencesRegistry, and one can inspect its contents by using:

> equivalencesRegistry$get_entry_names()
[1] "Composition" "Generalization" "Reduction"
[4] "Simplification" "Right Simplification" "Reorder"

These names correspond to the methods added to the registry by default and are used to index
those methods. Every method is accompanied by a description, so that we can see its definition:

> equivalencesRegistry$get_entry('Composition')
method Composition

fun <<function>>
description A -> B and A -> C equivalent to A -> BC

We can even use abbreviated names to refer to the method. For instance, we can use ‘comp’ instead
of ‘Composition’ in the above command to obtain the information about the composition rule.

The registry’s use enables the user to extend the functionality provided by the fcaR package.
One can define and implement new equivalences rules and add them to the registry, and make them
available to the apply_rules() method.

In order to add a new equivalence rule, we use the following:

> equivalencesRegistry$set_entry(method = 'Method name',
+ fun = method_function,
+ description = 'Method description')

where method_function() is the R function that computes the equivalences, and has the signature
function(LHS,RHS,attributes), where LHS and RHS are the sparse matrices defining the left-hand and
right-hand sides of the implications, attributes is the character vector of attribute names, and returns
the modified LHS and RHS. This mechanism has been used in the package to implement additional
equivalence rules.

The user can decide which rules to remove redundancies will be applied and in which order:

> fc$implications$apply_rules(rules = c('reduction',
+ 'comp',
+ 'gener',
+ 'simpl'))

These methods can be applied to binary and fuzzy implications.

Computation of closure and recommendations

One of the primary uses of a set of implications extracted from a formal context is computing the
closure of a set of attributes, that is, the fuzzy set obtained by applying the given implications on the
set of attributes.

The closure() method returns both the closure and the reduced "ImplicationSet" if reduce =
TRUE and only the closure if reduce = FALSE (default). For instance, we can create a fuzzy set where
the attribute P2 is present with:

> A <- Set$new(attributes = fc$attributes, P2 = 1)

Then, we can compute its closure and the reduced set of implications doing:

> fc$implications$closure(A, reduce = TRUE)
$closure
{P2, P4}

$implications
Implication set with 2 implications.
Rule 1: {P3 [0.5]} -> {P3}
Rule 2: {P1 [0.5], P3} -> {P1}

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=registry

CONTRIBUTED RESEARCH ARTICLE 354

6 Usage example. Fuzzy diagnostic system

In this section, a complete example of the use of fcaR on real-world problems is presented: Designing
a diagnostic system from a formal context with (fuzzy) medical data.

The dataset for this section is provided and documented in the package.

In this example, the aim is to build an automated system using the fcaR package to perform
medical diagnosis. We have focused on neurological pathologies since, in recent years, an increasing
number of initiatives have appeared to share, curate, and study specific, prevalent brain pathologies.
Among these pathologies, schizophrenia is of the highest interest, and public, curated repositories
have been released.

The data source is SchizConnect (Wang et al., 2016), an online data repository integrating and
mediating data from other schizophrenia-related databases, such as COBRE (Aine et al., 2017), which
collect neuroimaging, psychological, neurological and clinical information. SchizConnect allows
retrieving data about the patients that fulfil some conditions introduced as a query to the database.
A subset of the COBRE dataset has been retrieved by querying SchizConnect for 105 patients with
neurological and clinical symptoms. We also collected their corresponding diagnosis.

Among the clinical attributes in the dataset, one can find:

• Calgary Depression Scale for Schizophrenia (Addington et al., 1990), nine items (attributes) assessing
the level of depression in schizophrenia, differentiating between positive and negative aspects
of the disease.

• The Simpson-Angus Scale (Simpson and Angus, 1970), six items to evaluate Parkinsonism-like
alterations related to schizophrenia in an individual.

• The Structured Clinical Interview for DSM-III-R Personality Disorders (First et al., 1997), with nine
variables related to the presence of signs affecting personality.

• The diagnosis for each individual: it can be schizophrenia strict (abbreviated ‘dx_ss’) or other
diagnosis (abbreviated ‘dx_other’, which includes schizoaffective and bipolar disorders). These
diagnoses are mutually exclusive; thus, only one of them is assigned to each patient.

In summary, the dataset consists of the previous 30 attributes related to signs or symptoms and two
attributes related to diagnosis. So the dataset has 105 objects (patients), and 32 attributes to explore.
The symptom attributes are multi-valued.

For a given attribute (symptom), the available grades are absent, minimal, mild, moderate, moderate
severe, severe and extreme. Thus, taking into account these scale levels, the attributes are coded as
fuzzy and graded attributes with values 0, 1/6, 1/3, 1/2, 2/3, 5/6 and 1, respectively. Since the symptom
attributes are ordinal, for the sake of simplicity, they have been encoded as grades in the interval [0, 1],
just by mapping the lowest (absent) value to 0 and the greatest (extreme) to 1 and placing the remaining
values equidistantly in the interval. In Ganter and Obiedkov (2016), other strategies of scaling for
ordinal, nominal, or interval attributes are presented.

In fcaR, this dataset is exposed to the user with the name cobre32, and we can use it to create a
fuzzy formal context (see Figure 3):

> fc <- FormalContext$new(cobre32)

Now, let us build a diagnosis system that employs the tacit knowledge present in the formal
context. The objective is to define a function that takes a "Set" as input (with the clinical attributes of
an individual) and returns the degree of the diagnosis attributes using the implications extracted from
the formal context as an inference engine.

Next, we use the NEXTCLOSURE algorithm to extract implications and compute the set of concepts,
using fc$find_implications().

The concept lattice is quite big (14706 concepts); therefore, it cannot be plotted here for space and
readability reasons. For this reason, we only plot a sublattice of small size in Figure 4.

There is an aggregate of 985 implications extracted. Let us compute the average cardinality of the
LHS and the RHS of the extracted rules:

> colMeans(fc$implications$size())
LHS RHS

2.417597 1.954146

Note that our paradigm can deal with non-unit implications, that is, where there is more than
one attribute in the RHS of the implication. This feature is an extension of what is usual in other
paradigms, for example, in transactional databases.

We can use the simplification logic to remove redundancies and reduce the LHS and RHS size of the
implications. The reason to do this is to decrease the computational cost of computing closures:

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 355

C
O
S
A
S
1

C
O
S
A
S
2

C
O
S
A
S
3

C
O
S
A
S
4

C
O
S
A
S
5

C
O
S
A
S
6

C
O
S
A
S
7

F
IC

A
L
1

F
IC

A
L
2

F
IC

A
L
3

F
IC

A
L
4

F
IC

A
L
5

F
IC

A
L
6

F
IC

A
L
7

F
IC

A
L
8

F
IC

A
L
9

S
C
ID

II
10

S
C
ID

II
1
1

S
C
ID

II
12

S
C
ID

II
1
3

S
C
ID

II
14

S
C
ID

II
15

S
C
ID

II
16

S
C
ID

II
17

S
C
ID

II
1
8

S
C
ID

II
19

S
C
ID

II
20

S
C
ID

II
2
1

S
C
ID

II
22

S
C
ID

II
23

d
x
ss

d
x
ot
h
er

1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
59
63
66
69
72
75
79
82
85
88
91
94
97
100
103
106

Figure 3: Formal context of the cobre32 dataset. The default plot type allows us to identify patterns
occurring in the attributes, such as the sparsity of the SCIDII variables. Additionally, we can see
that the variables indicating diagnosis, dx_ss and dx_other in the last two columns, are binary and
mutually exclusive.

> fc$implications$apply_rules(rules = c('simplification', 'rsimplification'))
> colMeans(fc$implications$size())

LHS RHS
1.998308 1.557191

We can see that the average cardinality of the LHS has been reduced from 2.418 to 1.998 and that
the one of the RHS, from 1.954 to 1.557.

With the simplified implication set, we can build a recommender system by simply wrapping the
recommend() method inside a function:

> diagnose <- function(S) {
+
+ fc$implications$recommend(S = S,
+ attribute_filter =
+ c('dx_ss', 'dx_other'))
+
+ }

This function can be applied to "Set"s that have the same attributes as those of the formal context.
The attribute_filter argument specifies which attributes are of interest, in our case, the diagnosis
attributes.

Let us generate some sets of attributes and get the recommendation (diagnosis) for each one:

> S1 <- Set$new(attributes = fc$attributes,
+ COSAS_1 = 1/2, COSAS_2 = 1, COSAS_3 = 1/2,
+ COSAS_4 = 1/6, COSAS_5 = 1/2, COSAS_6 = 1)
> diagnose(S1)

dx_ss dx_other
1 0

> S2 <- Set$new(attributes = fc$attributes,
+ COSAS_2 = 1, COSAS_6 = 1, FICAL_1 = 1/3, FICAL_3 = 1/3)
> diagnose(S2)

dx_ss dx_other

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 356

∅

{dx ss}
{
0.33/FICAL 1

}

{
0.33/FICAL 1, dx ss

}

{
0.5/COSAS 2

}

{
0.5/COSAS 2, dx ss

} {
0.5/COSAS 2, 0.33/FICAL 1

}

{
0.5/COSAS 2, 0.33/FICAL 1, dx ss

}

Figure 4: Hasse diagram for a sublattice of the cobre32 formal context. Since the complete concept
lattice is huge, with the Hasse diagram of a sublattice we can understand the relationship in a subset
of the attributes. In this case, we can see how variables COSAS_2 and FICAL_1 are related to the variable
dx_ss which indicates the schizophrenia diagnosis.

0 0
> S3 <- Set$new(attributes = fc$attributes,
+ COSAS_4 = 2/3, FICAL_3 = 1/2, FICAL_5 = 1/2, FICAL_8 = 1/2)
> diagnose(S3)

dx_ss dx_other
0 1

These results mean that, for S1, the recommended diagnosis is schizophrenia strict, for S2 there is
not enough information, and the recommended diagnosis for S3 is other, different from schizophrenia
strict. For S2, maybe adding more attributes to it can help in obtaining a diagnosis.

One can inspect the reduced set of implications obtained after computing the closure for S2,
simplify them and filter them to get the implications that can be applied if more attribute values are
known for S2:

> cl <- fc$implications$closure(S2, reduce = TRUE)
> cl$implications$apply_rules(c('simp', 'rsimp', 'reorder'))
> cl$implications$filter(rhs = c('dx_ss', 'dx_other'),
+ not_lhs = c('dx_ss', 'dx_other'), drop = TRUE)
Implication set with 12 implications.
Rule 1: {FICAL_5 [0.33]} -> {dx_other}
Rule 2: {FICAL_6 [0.33], FICAL_8 [0.33]} -> {dx_ss}
Rule 3: {SCIDII_18 [0.33]} -> {dx_ss}
Rule 4: {COSAS_1 [0.5], FICAL_8 [0.33]} -> {dx_ss}
Rule 5: {SCIDII_20 [0.33]} -> {dx_ss}
Rule 6: {SCIDII_16 [0.33]} -> {dx_ss}
Rule 7: {SCIDII_12 [0.33]} -> {dx_ss}
Rule 8: {FICAL_7 [0.33]} -> {dx_ss}
Rule 9: {FICAL_6 [0.33], SCIDII_10 [0.5]} -> {dx_ss}
Rule 10: {COSAS_3 [0.5]} -> {dx_ss}
Rule 11: {COSAS_1 [0.5]} -> {dx_ss}
Rule 12: {SCIDII_10 [0.5]} -> {dx_ss}

We can check that, for S2, if the presence of any symptom (of the LHS of the implications) is
verified, then the implications above could directly tell us the diagnosis.

An extended version of the diagnosis system in this example has been presented in Cordero et al.
(2020), where the fcaR package has been used to build a conversational recommender system based
on fuzzy rules. In that work, the recommender system designed with the help of fcaR has obtained
better results than those of the classical methods used in the area of recommendations.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 357

7 Conclusions and future work

This work aims to present the first R package implementing the core methods in Formal Concept
Analysis. This development aims to provide a helpful tool for the FCA community and other fields
where knowledge discovery and retrieval play an essential role. Notably, the hybridization of FCA
with other Machine Learning techniques and its application to data mining processes is well-known,
making FCA an appealing tool for knowledge discovery.

This package provides R6 classes and methods to manage datasets presented as formal contexts,
use the derivation operators, work with the concepts (closed itemsets) or find and manage the basis
of implications. Additionally, the fcaR package implements a logic to infer knowledge from sets
of implications, allowing to compute closures and therefore, it can be used as the engine to build
recommender systems and automated reasoning tools.

Another feature included in the package is providing graphical visualisations of the concept lattice
that condenses the extracted knowledge.

The tool has been developed from two principles: integration with other packages and extensibility.
First, the arules package is a de facto standard when working with transactional databases, closed
itemsets and association rules in R. Since FCA’s perspective can be seen as complementary to this,
fcaR is able to import and export both the datasets and the implications from/to the analogous classes
defined in arules. This way, the user of arules can benefit from the FCA tools in fcaR, including the
simplification logic.

The extensibility of the fcaR is guaranteed by its design philosophy. First, the object-oriented
programming paradigm allows extending the classes and methods to other datatypes, other kinds
of formal contexts, or, for example, association rules. Second, using a registry for equivalence rules
makes it easy to include new logic tools in the package’s architecture without affecting existing code.
Thus, users can extend the package’s functionality by incorporating their methods and then testing
and comparing them in a single framework.

Thus, fcaR implements a wide range of features. With the help of the included documentation and
the comprehensive vignettes, any user can start analysing datasets with FCA tools quickly.

Regarding the low-level implementation, we have used sparse matrices as the primary internal
data structure of the package since they represent a space- and cost-efficient storage. Also, when
needed, the fcaR uses parallel computing and C routines to increase efficiency and tackle algorithmic
bottlenecks.

As an example of use, we have used the implications extracted from a dataset to develop a
recommender system to help diagnose schizoaffective disorders quickly.

The package is currently in stable development status. However, we devise future extensions in
terms of new or improved algorithms or as new applications arise (in areas such as recommender
systems, unsupervised learning or text mining).

We emphasize that fcaR is having a great acceptance. At the time of writing, it has now reached
more than 20,000 downloads from CRAN.

Acknowledgments

This work has been partially supported by the projects TIN2017-89023-P (Spanish Ministry of Economy
and Competitiveness, including FEDER funds), PGC2018-095869-B-I00 (Spanish Ministry of Science
and Innovation), and the Junta de Andalucía project UMA2018-FEDERJA-001, co-funded by the
European Regional Development Fund.

Bibliography

D. Addington, J. Addington, and B. Schissel. A depression rating scale for schizophrenics. Schizophrenia
research, 3(4):247–251, 1990. [p354]

C. J. Aine, H. J. Bockholt, J. R. Bustillo, J. M. Cañive, A. Caprihan, C. Gasparovic, F. M. Hanlon, J. M.
Houck, R. E. Jung, J. Lauriello, J. Liu, A. R. Mayer, N. I. Perrone-Bizzozero, S. Posse, J. M. Stephen,
J. A. Turner, V. P. Clark, and V. D. Calhoun. Multimodal neuroimaging in schizophrenia: Description
and dissemination. Neuroinformatics, 15(4):343–364, 2017. URL https://doi.org/10.1007/s12021-
017-9338-9. [p354]

W. W. Armstrong. Dependency Structures of Data Base Relationships. In IFIP Congress, pages 580–583,
1974. [p344]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://doi.org/10.1007/s12021-017-9338-9
https://doi.org/10.1007/s12021-017-9338-9

CONTRIBUTED RESEARCH ARTICLE 358

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2021. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.3-3. [p347]

P. Becker and J. H. Correia. The ToscanaJ suite for implementing conceptual information systems. In
Formal Concept Analysis, pages 324–348. Springer Berlin Heidelberg, 2005. URL https://doi.org/
10.1007/11528784_17. [p346]

R. Belohlávek and V. Vychodil. Attribute dependencies for data with grades I. International Journal
of General Systems, 45(7-8):864–888, 2016. URL https://doi.org/10.1080/03081079.2016.1205711.
[p341, 342]

R. Belohlávek and V. Vychodil. Attribute dependencies for data with grades II. International Journal of
General Systems, 46(1):66–92, 2017. doi: 10.1080/03081079.2016.1205712. URL https://doi.org/10.
1080/03081079.2016.1205712. [p341, 342]

R. Belohlávek, P. Cordero, M. Enciso, A. Mora, and V. Vychodil. Automated prover for attribute
dependencies in data with grades. International Journal of Approximate Reasoning, 70:51–67, 2016.
URL https://doi.org/10.1016/j.ijar.2015.12.007. [p342]

G. Birkhoff. Lattice Theory, volume 25. American Mathematical Soc., 1940. [p343]

W. Chang. R6: Encapsulated Classes with Reference Semantics, 2020. URL https://CRAN.R-project.org/
package=R6. R package version 2.5.0. [p347]

P. Cordero, M. Enciso, A. Mora, and I. P. de Guzmán. SLFD logic: Elimination of data redundancy
in knowledge representation. In IBERAMIA, volume 2527 of LNCS, pages 141–150. Springer, 2002.
URL https://doi.org/10.1007/3-540-36131-6_15. [p341, 344]

P. Cordero, M. Enciso, A. Mora, and M. Ojeda-Aciego. Computing minimal generators from im-
plications: a logic-guided approach. In CLA 2012, volume 972 of CEUR W.Proc., pages 187–198.
CEUR-WS.org, 2012. URL http://ceur-ws.org/Vol-972/paper16.pdf. [p342]

P. Cordero, M. Enciso, D. López, and A. Mora. A conversational recommender system for diagnosis
using fuzzy rules. Expert Systems with Applications, 154:113449, 2020. ISSN 0957-4174. URL
https://doi.org/10.1016/j.eswa.2020.113449. [p356]

C. Demko and K. Bertet. GALACTIC: Galois lattices, concept theory, implicational systems and
closures. a set of python3 packages for studying formal concept analysis. Theoretical Computer
Science, 845:1–20, 2020. [p346]

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL https://doi.org/10.18637/jss.v040.i08. [p345]

M. B. First, R. L. Spitzer, M. Gibbon, and J. B. Williams. User’s Guide for the Structured Clinical Interview
for DSM-IV Axis I Disorders SCID-I: Clinician Version. American Psychiatric Pub, 1997. [p354]

B. Ganter and S. A. Obiedkov. Conceptual Exploration. Springer, 2016. ISBN 978-3-662-49290-1. URL
https://doi.org/10.1007/978-3-662-49291-8. [p342, 345, 354]

B. Ganter and R. Wille. Formal Concept Analysis - Mathematical Foundations. Springer, 1999. ISBN
978-3-540-62771-5. URL https://doi.org/10.1007/978-3-642-59830-2. [p341]

J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant d’un tableau
de données binaires. Mathématiques et Sciences humaines, 95:5–18, 1986. [p344]

M. Hahsler, B. Grun, and K. Hornik. arules - a computational environment for mining association
rules and frequent item sets. Journal of Statistical Software, 14:1–25, 2005. URL http://dx.doi.org/
10.18637/jss.v014.i15. [p346]

T. Hanika and J. Hirth. Conexp-Clj - a research tool for fca. ICFCA (Supplements), 2378:70–75, 2019.
[p346]

D. I. Ignatov. Introduction to formal concept analysis and its applications in information retrieval and
related fields. CoRR, abs/1703.02819, 2017. [p341]

L. Jezková, P. Cordero, and M. Enciso. Fuzzy functional dependencies: A comparative survey. Fuzzy
Sets and Systems, 317:88–120, 2017. URL https://doi.org/10.1016/j.fss.2016.06.019. [p342]

S. O. Kuznetsov. Machine learning and formal concept analysis. In ICFCA 2004, volume 2961 of LNCS,
pages 287–312. Springer, 2004. URL https://doi.org/10.1007/978-3-540-24651-0_25. [p341]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1007/11528784_17
https://doi.org/10.1007/11528784_17
https://doi.org/10.1080/03081079.2016.1205711
https://doi.org/10.1080/03081079.2016.1205712
https://doi.org/10.1080/03081079.2016.1205712
https://doi.org/10.1016/j.ijar.2015.12.007
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://doi.org/10.1007/3-540-36131-6_15
http://ceur-ws.org/Vol-972/paper16.pdf
https://doi.org/10.1016/j.eswa.2020.113449
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
http://dx.doi.org/10.18637/jss.v014.i15
http://dx.doi.org/10.18637/jss.v014.i15
https://doi.org/10.1016/j.fss.2016.06.019
https://doi.org/10.1007/978-3-540-24651-0_25

CONTRIBUTED RESEARCH ARTICLE 359

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN 0-914894-42-0. [p345]

D. Meyer. registry: Infrastructure for R Package Registries, 2019. URL https://CRAN.R-project.org/
package=registry. R package version 0.5-1. [p353]

A. Mora, M. Enciso, P. Cordero, and I. P. de Guzmán. An efficient preprocessing transformation for
functional dependencies sets based on the substitution paradigm. In CAEPIA 2003, volume 3040
of LNCS, pages 136–146. Springer, 2003. URL https://doi.org/10.1007/978-3-540-25945-9_14.
[p342]

A. Mora, P. Cordero, M. Enciso, I. Fortes, and G. Aguilera. Closure via functional dependence
simplification. International Journal of Computer Mathematics, 89(4):510–526, 2012. URL https:
//doi.org/10.1080/00207160.2011.644275. [p342, 344, 345]

J. M. Moyano and L. Sanchez Ramos. RKEEL: using KEEL in R code. FUZZ-IEEE 2016, pages 257–264,
July 2016. URL http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737695. [p346]

L. S. Riza, C. Bergmeir, F. Herrera, and J. M. Benítez. frbs: Fuzzy rule-based systems for classification
and regression in R. Journal of Statistical Software, 65(6):1–30, 2015. URL https://doi.org/10.18637/
jss.v065.i06. [p346]

E. Rodríguez Lorenzo, K. Bertet, P. Cordero, M. Enciso, and A. Mora. The direct-optimal basis via
reductions. In CLA 2014, volume 1252 of CEUR W.Proc., pages 145–156. CEUR-WS.org, 2014. URL
http://ceur-ws.org/Vol-1252/cla2014_submission_18.pdf. [p342]

E. Rodríguez Lorenzo, K. V. Adaricheva, P. Cordero, M. Enciso, and A. Mora. From an implicational
system to its corresponding d-basis. In CLA 2015, volume 1466 of CEUR W.Proc., pages 217–228.
CEUR-WS.org, 2015. URL http://ceur-ws.org/Vol-1466/paper18.pdf. [p342]

G. Simpson and J. Angus. A rating scale for extrapyramidal side effects. Acta Psychiatrica Scandinavica,
45(S212):11–19, 1970. [p354]

M. Trabelsi, N. Meddouri, and M. Maddouri. A new feature selection method for nominal classifier
based on formal concept analysis. In KES 2017, volume 112 of Procedia Computer Science, pages
186–194. Elsevier, 2017. URL https://doi.org/10.1016/j.procs.2017.08.227. [p341]

K. Ushey, J. Allaire, and Y. Tang. reticulate: Interface to Python, 2020. URL https://CRAN.R-project.
org/package=reticulate. R package version 1.18. [p345]

P. Valtchev, D. Grosser, C. Roume, and M. R. Hacene. Galicia: an open platform for lattices. In ICCS’03,
pages 241–254. Citeseer, 2003. [p346]

L. Wang, K. I. Alpert, V. D. Calhoun, D. J. Cobia, D. B. Keator, M. D. King, A. Kogan, D. Landis, M. Tallis,
M. D. Turner, S. G. Potkin, J. A. Turner, and J. L. Ambite. Schizconnect: Mediating neuroimaging
databases on schizophrenia and related disorders for large-scale integration. NeuroImage, 124:
1155–1167, 2016. URL https://doi.org/10.1016/j.neuroimage.2015.06.065. [p354]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. URL https://doi.org/10.21105/joss.
01686. [p345]

R. Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In Ordered Sets,
pages 445–470. Springer, 1982. [p341]

Y. Xie, J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca
Raton, Florida, 2018. ISBN 9781138359338. [p345]

S. A. Yevtushenko. System of data analysis Concept Explorer. In Proc. 7th National Conference on
Artificial Intelligence (KII’00), pages 127–134, 2000. [p346]

Pablo Cordero
Universidad de Málaga
Departamento de Matemática Aplicada
ETSI Telecomunicaciones, Campus de Teatinos
http://webpersonal.uma.es/de/pcordero/My_personal_web/Wellcome.html

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=registry
https://CRAN.R-project.org/package=registry
https://doi.org/10.1007/978-3-540-25945-9_14
https://doi.org/10.1080/00207160.2011.644275
https://doi.org/10.1080/00207160.2011.644275
http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737695
https://doi.org/10.18637/jss.v065.i06
https://doi.org/10.18637/jss.v065.i06
http://ceur-ws.org/Vol-1252/cla2014_submission_18.pdf
http://ceur-ws.org/Vol-1466/paper18.pdf
https://doi.org/10.1016/j.procs.2017.08.227
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.1016/j.neuroimage.2015.06.065
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
http://webpersonal.uma.es/de/pcordero/My_personal_web/Wellcome.html

CONTRIBUTED RESEARCH ARTICLE 360

ORCiD: 0000-0002-5506-6467
pcordero@uma.es

Manuel Enciso
Universidad de Málaga
Departamento de Lenguajes y Ciencias de la Computación
ETSI Informática, Campus de Teatinos
http://lcc.uma.es/~enciso/index_EN.html
ORCiD: 0000-0002-0531-4055
enciso@uma.es

Domingo López-Rodríguez
Universidad de Málaga
Departamento de Matemática Aplicada
ETSI Telecomunicaciones, Campus de Teatinos
https://dominlopez.netlify.app
ORCiD: 0000-0002-0172-1585
dominlopez@uma.es

Ángel Mora
Universidad de Málaga
Departamento de Matemática Aplicada
ETSI Informática, Campus de Teatinos
https://amorabonilla.github.io/
ORCiD: 0000-0003-4548-8030
amora@uma.es

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://orcid.org/0000-0002-5506-6467
mailto:pcordero@uma.es
http://lcc.uma.es/~enciso/index_EN.html
https://orcid.org/0000-0002-0531-4055
mailto:enciso@uma.es
https://dominlopez.netlify.app
https://orcid.org/0000-0002-0172-1585
mailto:dominlopez@uma.es
https://amorabonilla.github.io/
https://orcid.org/0000-0003-4548-8030
mailto:amora@uma.es

	fcaR, Formal Concept Analysis with R
	Introduction
	Background on FCA
	Derivation operators
	The concept lattice
	Implications and logic

	Related works
	Package design
	Package availability
	Data structures
	Interfacing with arules
	Use for reproducible research

	Formal concept analysis with fcaR
	Derivation operators
	Concept lattice
	Implications and logic

	Usage example. Fuzzy diagnostic system
	Conclusions and future work

