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Abstract: This paper investigates the distribution characteristics of Fourier, discrete cosine, and dis-
crete sine transform coefficients in T1 MRI images. This paper reveals their adherence to Benford’s law,
characterized by a logarithmic distribution of first digits. The impact of Rician noise on the first digit
distribution is examined, which causes deviations from the ideal distribution. A novel methodol-
ogy is proposed for noise level estimation, employing metrics such as the Bhattacharyya distance,
Kullback–Leibler divergence, total variation distance, Hellinger distance, and Jensen–Shannon diver-
gence. Supervised learning techniques utilize these metrics as regressors. Evaluations on MRI scans
from several datasets coming from a wide range of different acquisition devices of 1.5 T and 3 T,
comprising hundreds of patients, validate the adherence of noiseless T1 MRI frequency domain
coefficients to Benford’s law. Through rigorous experimentation, our methodology has demonstrated
competitiveness with established noise estimation techniques, even surpassing them in numerous
conducted experiments. This research empirically supports the application of Benford’s law in
transforms, offering a reliable approach for noise estimation in denoising algorithms and advancing
image quality assessment.

Keywords: MRI; Rician noise; Benford’s law; noise level estimation

MSC: 68U10; 62H35

1. Introduction

Rician noise appears in various fields and applications: in wireless communications
systems [1,2], Rician noise arises due to the presence of multipath fading; in radar sys-
tems [3], this type of noise can be present in signals due to the interaction of the transmitted
radar signal with objects and the surrounding environment; in optical communication
systems [4], the interference between the direct signal and reflected or scattered compo-
nents can introduce Rician noise; and in magnetic resonance imaging (MRI) [5], the noise is
present when the MRI signal from protons in tissues interferes constructively or destruc-
tively, leading to the presence of both signal and noise components in the acquired image.

As a widely used diagnostic tool, MRI provides detailed information about internal
organs, tissues, and abnormalities that may not be easily discernible through other imaging
modalities. The clinical implications of MRI cannot be understated, as it plays a vital role
in various medical disciplines, such as neurology, oncology, and musculoskeletal imaging.
Therefore, understanding the characteristics of Rician noise in MRI images is of utmost
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importance, as noise can significantly impact the quality and accuracy of these diagnostic
images, potentially leading to misinterpretations or missed diagnoses.

Moreover, Rician noise presents specific challenges in MRI images that are distinct
from other types of noise encountered in different imaging modalities. Rician noise is
known to be signal-dependent, making it challenging to separate noise from the raw
MRI data while preserving important image features, and it affects low-intensity regions,
which are crucial for detecting subtle abnormalities or lesions. Accurate estimation of the
deviation parameter of the Rician noise distribution is essential for developing effective
denoising techniques and improving image quality, directly benefiting clinical diagnosis,
treatment planning, and monitoring.

Denoising methods are an essential aspect of pre-processing for magnetic resonance
imaging (MRI), and their goal is to improve image quality by increasing the signal-to-
noise ratio (SNR) while preserving the essential features of the image. A wide variety of
denoising methods have been proposed in the literature, including those based on the
wavelet transform [6], anisotropic diffusion filter [7], maximum likelihood approach [8],
linear minimum square error [9], singular value decomposition [10], sparse representation
learning [11], non-local filters [12], and variational mode decomposition [13].

With the advent of deep learning, new denoising techniques have emerged that have
shown to be highly effective at addressing the noise component in MRI data. One such
technique is the use of stacked sparse auto-encoders, as proposed in [14], which uses a
stacked architecture of sparse auto-encoders to learn a compact and robust representation
of the data. Another technique is the use of multi-layer perceptrons, as presented in [15],
which utilizes a deep neural network architecture to learn a non-linear mapping between
the noisy and clean images. Additionally, convolutional neural networks (CNNs) have been
proposed for medical image denoising [16], which have been shown to effectively learn
the underlying image structure and remove noise. Furthermore, attention-guided models
such as [17] have been presented, which use attention mechanisms to selectively focus
on the regions of the image that are most affected by noise. These deep learning-based
methods have been shown to achieve good performance in denoising MRI data, particularly
in the case of the residual learning-based deep denoising conventional neural network
for Gaussian denoising [18] and the convolutional neural network for medical image
denoising [19]. These methods have been shown to be effective at removing noise while
preserving image features, resulting in higher-quality images and improved diagnostic
accuracy. Moreover, a recent study demonstrated that denoising using a deep neural
network performs better than several conventional denoising methods [20].

Some denoising algorithms assume knowledge of the deviation parameter σ of the
Rician distribution that generates the noise. This parameter is crucial for the performance
of the denoising algorithm as it characterizes the level of noise present in the image.
Estimation of this noise parameter can be achieved through methods based on the principal
components analysis (PCA) [21] and wavelet transform [22]. The PCA-based method is
more effective for weak texture images as it is based on the analysis of the principal
components of the data, but it is less suited for Rician noise estimation as it assumes
a Gaussian distribution. In the wavelet approach, the image is decomposed into sub-
bands, with the HH sub-band consisting of the wavelet noise coefficients. The median of
these coefficients is then utilized to compute the median absolute deviation estimator for σ,
which is a robust statistic for estimating the noise level. Although this wavelet model is
more suitable for Gaussian noise, it can be appropriately modified [23] for estimating the
σ parameter in Rician noise. This is accomplished by exploiting the characteristics of the
Rician distribution, such as the presence of a non-zero mean, and using them to adapt the
estimation process accordingly.

In this study, we propose an alternative method for estimating the noise deviation
parameter by analyzing the statistical distribution of the first significant digits in a dataset
using Benford’s law. While it is commonly acknowledged that the histogram of an image
does not conform to Benford’s law, certain image transformations have been found to
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exhibit consistency with this distribution. For example, in [24], it was demonstrated that
the gradient and Laplace transform magnitude adhere to Benford’s law, even in medical
images such as MRI [25]. Additionally, other transformations, such as the discrete cosine
and wavelet transforms [26], have been found to have coefficients that conform to Benford’s
law. The proposed method leverages these findings to analyze the coefficients of different
transforms of an image and determine the level of agreement between the expected distri-
bution and the actual first digit distribution in the transformed domain as an indicator of
the noise parameter σ. Through this approach, the aim is to demonstrate that the transform
coefficients of an image closely follow Benford’s law and that larger amounts of noise in an
image result in deviation from this distribution.

While it is true that Benford’s law has been previously applied in various domains, in-
cluding financial auditing [27], data analysis [28] and as quality-aware features in synthetic
images [29], its application to estimate the noise deviation parameter in medical images,
particularly in the context of MRI, is a novel contribution. This study demonstrates the
use of Benford’s law to analyze the statistical distribution of the first significant digits of
image transform coefficients as an indicator of noise level. The novelty lies in the specific
application of Benford’s law to estimate the noise parameter σ in different image transforms.
To the best of our knowledge, such an approach has not been previously explored for noise
estimation in medical images.

It is shown how regression techniques can be applied to accurately predict the noise
level of an image. Note that, in a previous work [30], the authors have explored the
regression of the noise level from the fitting of the Fourier coefficients to Benford’s law.
Now, we provide a deeper study to assess if other different transforms (such as the discrete
cosine transform and the discrete sine transform) present the same first-digit distribution.

This study demonstrates the effectiveness of the proposed method in estimating the
noise deviation parameter across different image transforms. Comprehensive analyses, in-
cluding comparisons with existing methods and an evaluation using diverse datasets, were
carried out. The results showcase the consistent adherence of the first-digit distributions in
transformed images to Benford’s law, as well as the correlation between the deviations from
this distribution and the noise level. These findings provide empirical evidence supporting
the utility of the proposed method for accurate noise estimation.

This study is structured as follows. Following the introduction, Section 2 describes
the proposed method in detail. In Section 3, the experimental setting and datasets used to
test our hypothesis are described, and in Section 4, the experimental results are presented,
including a comprehensive analysis of the results obtained. Finally, a conclusion is drawn
in Section 5, summarizing the main findings of this research and highlighting potential
areas for future work.

2. Methodology

Next, the proposal to estimate the level of Rician noise in 3D MRIs is detailed. As is
known in the previous literature, the distribution of the noise for the magnitude of magnetic
resonance images can be well modeled by the Rice probability distribution [5]. Let us
note the noiseless voxel intensity as x̂, while x is the measured (noisy) voxel intensity
corrupted by Rician noise with level σ. Here, σ is the standard deviation of a Gaussian
noise process that affects both the real part and imaginary part of the magnetic resonance
image. Therefore, the noise level σ can be assumed to be equal for both parts. Under these
conditions, the probability density of observing x is [5]:

p(x) =
x

σ2 exp
(
− x2 + x̂2

2σ2

)
I0

(
xx̂
σ2

)
(1)

where I0 stands for the modified zeroth-order Bessel function of the first kind.
We propose estimating the Rician noise level σ by comparing the observed distribution

of the first significant digit with the probability distribution given by Benford’s law. This is
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an empirical law that establishes a logarithmic probability distribution Q(m) for the first
significant digit m of the base-10 representation of a non-null real number y [31]:

m =

⌊
|y|

10blog10|y|c

⌋
(2)

Q(m) = log10

(
1 +

1
m

)
(3)

where m ∈ {1, 2, . . . , 9}, |·| denotes the absolute value, and b·c stands for rounding to-
wards −∞.

If a distribution of real numbers follows Benford’s law, then most of them start with
lower digits. In particular, the probability of starting with the digit 1 is about 0.301, digit 2
is about 0.176, and so on. The least likely starting digit is 9 with a probability of about 0.046.
It is remarkable that many natural processes lead to number distributions that follow this
law. These distributions include sizes of geographic features, numbers of individuals in a
biological population, and specific heats of chemical compounds. In particular, those distri-
butions that come from the combination of several factors or subprocesses are more likely
to follow the law. It has been shown [32] that if random samples are drawn from a random
collection of probability distributions that conform to some unbiasedness conditions, then
the combined distribution of samples will conform to Benford’s law.

Many empirical distributions coming from natural processes follow Benford’s law [26].
We hypothesize that this is also the case for noiseless MRIs. In other words, the more
Rician noise that an MRI contains, the more that it departs from Benford’s law. Unfor-
tunately, the distribution of the first significant digit is extremely sensitive to the scale
of possible values, which is highly variable for MRIs. We propose alleviating this issue
by considering the values of a 3D transform of the MRI intensity values. The scale of the
transformed values is quite independent of the scale of intensity values, which makes the
former more adequate for the analysis of the first significant digits than the latter. Moreover,
it has been observed that probability distributions with a wide range, i.e., those that spread
across many orders of magnitude, are more likely to obey Benford’s law [33]. This is the case
for some transforms. For example, the first digit distribution of the 2D discrete cosine trans-
form coefficients according to Benford’s law has been employed to detect fake images
and repeated JPEG compressions [34–37]. The following multidimensional 3D transforms
have been considered for this purpose: discrete Fourier transform (DFT), discrete cosine
transform (DCT) type 2, and discrete sine transform (DST) type 2. They are defined as
follows [38]:

yDFT,k =
N−u

∑
n=0

xk exp(−i2πk · (n÷N)) (4)

yDCT,k =
N−u

∑
n=0

xk cos
(π

2
k · ((2n + u)÷N)

)
(5)

yDST,k = 2
N−u

∑
n=0

xk sin
(

π(k + u) ·
((

n +
1
2

u
)
÷N

))
(6)

where · stands for the dot product, i denotes the imaginary unit, u = (1, 1, 1), and
k = (k1, k2, k3) and n = (n1, n2, n3) are three-dimensional index vectors. The j-th com-
ponent of k and n has values ranging from 0 to Nj − 1, where Nj is the number of voxels
of the images in the j-th dimension, j ∈ {1, 2, 3}. Also, N = (N1, N2, N3). Finally, n÷N
stands for the element-wise division of three-dimensional vectors:

n÷N =

(
n1

N1
,

n2

N2
,

n3

N3

)
(7)
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From now on, we will note y as the result of applying one of the 3D considered
transforms (DFT, DCT, or DST) to the measured pixel intensity values x. The first significant
digit of the representation of y in decimal format will be noted as m, as defined in (2).

Let P(m) be the observed probability distribution of m, and let Q(m) be the theoretical
probability distribution of m as obtained from Benford’s law (3). The dissimilarity between
the probability distributions P(m) and Q(m) must be measured in order to be employed as
an input for the regression of the Rician noise level σ. The lower the dissimilarity, the lower
the Rician noise level. The following measures are considered: Bhattacharyya distance (BD),
Kullback–Leibler divergence (KL), total variation distance (TV), Hellinger distance (HD),
and Jensen–Shannon divergence (JS). They are defined as follows [39–43]:

DBD(P, Q) = − log
9

∑
m=1

√
P(m)Q(m) (8)

DKL(P, Q) =
9

∑
m=1

P(m) log
P(m)

Q(m)
(9)

DTV(P, Q) = max
m∈{1,...,9}

|P(m)−Q(m)| (10)

DHD(P, Q) =
1√
2

√√√√ 9

∑
m=1

(√
P(m)−

√
Q(m)

)2
(11)

DJS(P, Q) =
1
2
DKL(P, V) +

1
2
DKL(Q, V) (12)

where
V =

1
2
(P + Q) (13)

The Rician noise level σ is estimated from them by means of a regression function f
applied to H dissimilarity measures:

σ ≈ f (ϕ1(P, Q), . . . , ϕH(P, Q)) (14)

ϕh ∈
{
DBD,DKL,DTV ,DHD,DJS

}
∀h ∈ {1, . . . , H} (15)

where f is obtained by machine learning regression methods from the observed dissimilari-
ties (input variables or predictors) and the actual Rician noise level (output variable). In this
work, one input variable (H = 1) and two input variables (H = 2) have been considered for
the regression. The following regression methods have been considered: linear regression,
polynomial (quadratic) regression, random forest regression, support vector regression,
and kernel regression.

After the regression function f has been learned from the data, the performance of
the estimation (14) must be measured. To this end, three performance measures have been
chosen: the mean square error (MSE; lower is better), the mean absolute error (MAE; lower
is better), and the coefficient of determination (R2; higher is better). Their definitions are
as follows:

MSE =
1
T

T

∑
t=1

(σt − f (ϕ1(Pt, Q), . . . , ϕH(Pt, Q)))2 (16)

MAE =
1
T

T

∑
t=1
|σt − f (ϕ1(Pt, Q), . . . , ϕH(Pt, Q))| (17)

R2 = 1− MSE
1
T ∑T

t=1(σt − σ̂)2 (18)

σ̂ =
1
T

T

∑
t=1

σt (19)
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where σt is the actual noise level of the test image of index t and T is the total number of
test images.

Outlined in this section are the steps executed by the algorithm presented in Figure 1.
Hereafter, the algorithm’s procedure is elucidated:

1. A 3D MRI image belonging to a repository is selected.
2. Each image renders 20 noisy images.
3. Three transformations are applied to each noisy image: DFT, DCT, and DST, providing

three transformed noisy images.
4. Calculate the distribution of the appearance of the first significant digit for each

transformed noisy image.
5. The distribution obtained is compared with Benford’s law distribution using five

divergences: BD, KL, TV, H, and JS.
6. Each combination of transform and divergence measure gives place to a metrics set

that will be used to predict the noise added to the image.
7. Different regressors are used to train and validate models with either one or two inputs

(metrics).
8. To evaluate the precision of each model, three performance metrics are used: MSE,

MAE, and R2.

3D MRI ADD NOISE

Image

TRANSFORM COMPARE DISTRIBUTION

Metrics:

M1: DFT, BD

M2: DCT, BD

M3: DST, BD

…

M15: DST, JS

Divergences:

BD

KL

TV

HD

JS

Regressor

Output: ො𝜎𝑗, 𝑗 ∈ [1,20]

…

Performance Metrics:
MSE, MAE, R² 

MODEL

𝜎𝑗, 𝑗 ∈ [1,20]

 

Input:

𝑥, 𝑦 ∈ [1,15]

M𝑥
M𝑥 + M𝑦 

DFT

DCT

DST

Noise levels

Figure 1. From left to right, the steps of the algorithm are presented. Images from each repository
are noise-added. The noise image is transformed, and the distribution of the first digit appearance
is compared with Benford’s Law distribution. The couple transform divergence makes one metric
(Mx) that will be used as an input on the model. The input can be single or double, and the output
is the predicted noise on the image. Three performance metrics are used to measure the success of
the model.

3. Experimental Settings

To assess the validity of our methodology, the experiments were conducted on very
different datasets. We made sure that the selected repositories were publicly available
to allow replication. Furthermore, we selected datasets with high dimensionality and
discarded those with insufficient dimensional resolution in any of the axes, which is
common in some image modalities. In this way, we ensure a sufficient number of voxels
to generate the Benford distribution. First, 95 T1-weighted brain MRIs were carefully
selected from healthy participants through Mindboggle [44] to ensure high quality for an
accurate noise analysis. These images are publicly accessible with a non-restrictive license.
Also, 903 images from fastMRI [45] were used. The data, including the number of MRIs
and their dimensions (in parentheses), are described below. For sub-datasets in which
dimension is not specified, the number of slices of the first and second dimensions vary
in the interval [192, 512] and [256, 512], respectively, while the third dimension takes the
value 16.

For Mindboggle, the NIfTI format images were obtained from five repositories: HLN [46]
(12, 256 × 256 × 170), MMRR [47] (21, 170 × 256 × 256), NKI-RS [48] (22, 192 × 256 × 256),
NKI-TRT [48] (20, 192 × 256 × 256), and OASIS-TRT [49] (20, 256 × 256 × 160).
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For fastMRI, the NIfTI format images were obtained from eight data subsets: five data
subsets with 1.5 Tesla acquisitions, hereinafter fastMIR-1.5; and three data subsets with
3 Tesla acquisitions, hereinafter fastMIR-3. fastMIR-1.5 is composed of the sub-datasets AX-
T1-1.5 (210), AX-T1-POST-1.5 (219), Axial-T1-SE (12), T1-AXIAL (13), and T1-AXIAL-POST-
GAD (22). fastMIR-3 is composed of the sub-datasets AX-T1-3 (134), AX-T1-FLASH-POST
(22), and AX-T1-POST-3 (267).

In order to simulate Rician Noise, a normal distribution was generated utilizing the
standard deviation within the specific range (0%, 40%] to control the variability of the noise.
Then, the Gaussian noise was added in the complex domain by scaling with respect to the
amplitude of the signal [50]:

Ir = X̂ + sµ1, µ1 ∼ N (0, σj), Ii = X̂ + sµ2, µ2 ∼ N (0, σj), s = IQR(X̂) (20)

Xj =
√

I2
r + I2

i (21)

where X̂ is the original image, Ir and Ii are the real and imaginary component, σj is the
standard deviation of the added Gaussian noise, s is a noise scaling parameter, and X is the
computed noisy image. For each T1 image, j = 20 random noisy images were generated
with σj ∈ (0, 0.4], each with its unique noise pattern for each repository. This process
allowed us to create diverse images with controlled noise levels. The interquartile range is
employed as the noise-scaling parameter. This way, the added noise level is robust against
outliers in the values of the noiseless images. To complete this explanation, in Table 1,
we list the SNR values obtained after adding noise at different levels of σ.

Table 1. Noise levels (σ) used in this work and the induced SNR of the noisy images in the
12HLN repository.

σ Average SNR σ Average SNR

0.02 521.80 0.22 5.30
0.04 131.19 0.24 4.62
0.06 58.86 0.26 4.08
0.08 33.55 0.28 3.66
0.10 21.83 0.30 3.31
0.12 15.47 0.32 3.03
0.14 11.63 0.34 2.80
0.16 9.14 0.36 2.61
0.18 7.43 0.38 2.44
0.20 6.21 0.40 2.30

Subsequently, the transformations were computed using all MRI voxels, and a probabil-
ity distribution of the frequency of the first digit for each voxel was constructed. Afterwards,
all the images in the transformed domain were evaluated to ensure that they fit Benford’s
law distribution.

Considering Benford’s law as a noise detection mechanism, five different models were
put forward to predict the quantity of noise in an MRI:

• Linear regression (LR): fits a straight line to data points to model linear relationships.
• Polynomial regression of degree two (PR): extends linear regression by using quadratic

functions to capture non-linear patterns.
• Random forest (RF): ensemble of decision trees that provides a flexible, non-linear

regression model.
• Support vector regression (SVR): uses support vector machines to find a hyperplane

that best fits the data while allowing for deviations.
• Kernel regression (KR): applies kernel functions to estimate non-linear relationships

between data points.

Some of the following parameters were set to train the models, and the rest were kept
at their default values:
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• PR: the maximal degree of the polynomial features is two, and no bias (i.e., like
intercept in LR) was included (include_bias = False).

• RF: the minimum number of samples required to split an internal node is 20
(min_samples_split = 20).

• SVR: rb f kernel was employed with regularization parameter C = 1 and epsilon = 0.001.
• KR: the type of variable was set as continuous, multiplied by the total number of features.

A 10-fold cross-validation was used to evaluate the models for each repository sep-
arately. Therefore, the images from each repository were split into training (90%) and
validation (10%) sets 10 times to validate the considered models. MSE, MAE, and R2

were the performance metrics used to measure the agreement between the predicted noise
and the actually added noise, following Equations (16)–(18). MSE and MAE measure
the squared and absolute errors, respectively, and R2 indicates the goodness-of-fit of the
predicted noise in the test images.

For the present investigation, up to two metrics were utilized as inputs for each
regressor, and the output is always the noise quantity/level. The considered metrics are
listed in Table 2. The notation Mi is employed whenever the i-th metric is employed as the
only input for the regression. On the other hand, the notation Mi + Mj means that the i-th
and j-th metrics are used as joint inputs for the regression; that is, the predictor variables
in the regression model are given by the vector (Mi, Mj). Joint metrics are employed
because in many cases, two inputs provide more information than one to the regressor,
thereby leading to better Rician noise estimation performance. There are 120 metrics
analyzed: 15 Mi and 105 Mi + Mj. The considered metrics span a wide range of fast 3D
transformations, and the probability distribution dissimilarity measures are conducted so
as to increase the options to obtain a good estimation of the Rician noise from the study
of the dissimilarity of the first digit distribution of the transformed data with respect to
the Benford distribution. Please note that in the experiments, good results are attained
with different dissimilarity measures. Therefore, dropping some of them would somehow
decrease the performance of the proposed noise estimation approach. These dissimilarity
measures have been chosen because they are fast to compute and are well known in the
probability distribution dissimilarity literature.

Table 2. Definitions of metric variables, specifying the transformation and dissimilarity measures used.

Metrics Transformation Dissimilarity

M1 DFT BD
M2 DCT BD
M3 DST BD
M4 DFT KL
M5 DCT KL
M6 DST KL
M7 DFT TV
M8 DCT TV
M9 DST TV

M10 DFT HD
M11 DCT HD
M12 DST HD
M13 DFT JS
M14 DCT JS
M15 DST JS

When employing a single metric as the input, the results are depicted in Figures 2 and
S1–S13. These figures illustrate the models (represented by color lines) and their alignment
with the data points (depicted as blue dots) for diverse sub-datasets, highlighting the best
metric for each specific case.
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Figure 2. M4 training data (blue dots) are displayed along with the five models in the HLN repository.

After extensive research, the variance-stabilizing transformation (VST) [51] methodol-
ogy is the only one with publicly available code; therefore, this method has been used to
compare with our models. They present a stable and fast iterative procedure for robustly
estimating the noise level from a single Rician-distributed image. The results of predicting
the Rician noise with the proposed procedure were compared based on the performance
measures for each sub-dataset.

For this study, we used a PC with an Intel Core i7 CPU, 32 GB of RAM, an NVIDIA
RTX2080 Super Ventus GPU, and a 1TB SSD. The system operated on Ubuntu 20.04 and
utilized Python 3.8, along with various scientific libraries, including matplotlib, nibabel, scipy,
sklearn, and benford [52]. The source code with the scripts and sample data is available
at: https://github.com/icai-uma/Regression_RicianNoiseLevel_3DMRI_DistributionFi
rstSignificantDigit (accessed on 3 September 2023).

4. Results

In a previous work [30], we explored only M1 and M3 as separate inputs for the
regression of the Rician noise level, obtaining the best results in the PR model with the
HLN repository. Now, we propose new metrics as inputs and new regressors to estimate
the Rician noise.

There are 120 different metrics analyzed in this study (15 single metrics and 105 com-
binations of two metrics). The metrics are evaluated by three performance measures
(MSE, MAE, and R2). For each repository and sub-dataset and for each performance
measure, a score is assigned to every metric. The best performing metric is given a score of
120, the second best a score of 119, and so on. For the Mindboggle and fastMRI (1.5 T acqui-
sition) repositories, five sub-datasets are considered; hence, the maximum score of a metric
in those repositories is 600, so the closer it is to this value, the better the metric performs
on the repository. In the fastMRI 3T acquisition repository, only three sub-datasets were
considered; thus, the maximum possible score for a metric in this repository is 360.

Note that in the tables, we present the three goodness-of-fit measures used in this
work for each of the repositories used, presenting only the 10 best sets of predictors after
scoring by aggregating the experimental results for each repository.

This analysis was carried out for each sub-dataset, presented in the Supplemen-
tary Materials: for HLN, see Tables S1–S3; for MMRR, see Tables S4–S6; for NKI-RS,
see Tables S7–S9; for NKI-TRT, see Tables S10–S12; for OASIS-TRT, see Tables S13–S15;

https://github.com/icai-uma/Regression_RicianNoiseLevel_3DMRI_DistributionFirstSignificantDigit
https://github.com/icai-uma/Regression_RicianNoiseLevel_3DMRI_DistributionFirstSignificantDigit
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for AX-T1-1.5, see Tables S16–S18; for AX-T1-POST-1.5, see Tables S19–S21; for Axial-T1-
SE, see Tables S22–S24; for T1-AXIAL, see Tables S25–S27; for T1-AXIAL-POST-GAD, see
Tables S28–S30; for AX-T1-3, see Tables S31–S33; for AX-T1-FLASH-POST, see Tables S34–S36;
and for AX-T1-POST-3, see Tables S37–S39. To make this information collected in the tables
in the Supplementary Materials understandable, this paper includes one figure for each
dataset plotting the best input: for one metric as an input, see Figure 2; and for two metrics
as an input, see Figures 3–14. The metrics were selected according to the R2 value based on
the analysis represented in the Supplementary Materials.

Figure 2 shows the graphical representation of the linear regression models obtained
using the M4 metric as the only predictor. The blue points indicate the values of the training
set, while the colored lines represent each of the estimates made by the different models.
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Figure 3. Regression of the MMRR repository using SVR. Predictors are (M1, M2). The opacity of
each shape indicates the noise level associated. More details in the main text.
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Figure 4. Regression of the NKI-RS repository using PR. Predictors are (M4, M6). The opacity of each
shape indicates the noise level associated.
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Figure 5. Regression of the NKI-TRT repository using LR. Predictors are (M6, M15). The opacity of
each shape indicates the noise level associated.
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Figure 6. Regression of the OASIS-TRT repository using KR. Predictors are (M5, M8). The opacity of
each shape indicates the noise level associated.
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Figure 7. Regression of the AX-T1 dataset with 1.5 Tesla acquisition using KR. Predictors are
(M8, M12). The opacity of each shape indicates the noise level associated.



Axioms 2023, 12, 1117 12 of 30

0.000 0.005 0.010 0.015 0.020
M5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
9

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 d
at

a,
 G

T 
no

ise

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n 
da

ta
, p

re
di

ct
ed

 n
oi

se

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n 
da

ta
, G

T 
no

ise

Figure 8. Regression of the AX-T1-POST dataset with 1.5 Tesla acquisition using SVR. Predictors are
(M5, M9). The opacity of each shape indicates the noise level associated.
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Figure 9. Regression of the AX-T1-SE dataset with 1.5 Tesla acquisition using SVR. Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.
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Figure 10. Regression of the T1-AXIAL dataset with 1.5 Tesla acquisition using KR. Predictors are
(M1, M6). The opacity of each shape indicates the noise level associated.
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Figure 11. Regression of the AXIAL-POST-GAD dataset with 1.5 Tesla acquisition using KR. Predic-
tors are (M6, M10). The opacity of each shape indicates the noise level associated.
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Figure 12. Regression of the AX-T1 dataset using KR (best ranked model). Predictors are (M12, M13).
The opacity of each shape indicates the noise level associated.
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Figure 13. Regression of the AX-T1-FLASH-POST dataset using KR (best ranked model). Predictors
are (M11, M13). The opacity of each shape indicates the noise level associated.
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Figure 14. Regression of the AX-T1-POST dataset using KR (best ranked model). Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.

In each of Figures 3–14, each shape represents an instance of the corresponding
repository, while the filled color indicates the level of noise.

• The amount of noise in one of the instances of the training set is indicated by the
intensity of the blue fill color of the circles.

• The intensity of the green color within the squares indicates the actual level of noise in
an instance of the validation set.

• The red color fill within a triangle has been used to indicate the level of noise predicted
or estimated by the regression.

These shapes are located in the plane at coordinate points that coincide with the
metrics used as inputs to the regression. That is, for each image in the training set, the
corresponding metrics are calculated. For the sake of simplicity, let us assume that these
metrics are M1 and M2, and let us illustrate this using Figure 3 as an example. In the
graph, a circle is represented at the coordinates (M1, M2), and the intensity of the blue fill
is proportional to the actual level of noise present in the image. Once the regression model
is created, it is applied to the images in the validation set; for each image, its metrics are
calculated, and a square is placed in the corresponding coordinates. The green fill in the
square represents the actual level of noise in the image. The estimate of the noise level
produced by the regression model is represented by a triangle, in the same coordinates
(as it corresponds to the same image) as the square of the same instance and with a fill
intensity proportional to the estimate obtained. Thus, to compare the goodness-of-fit of
the regression, the intensity of the filling of the squares and triangles must be compared.
For a good fit, this intensity will be similar. This way of presenting the results graphically
allows us to locate all instances, in both training and validation, to check if the validation is
a representative sample of all the data and to confirm the fit made.

This information is summarized in Tables 3–11, one for each performance measure by
dataset; the first shows MSE, the second MAE, and the third R2. The metrics are sorted
by score from best to worst, and the top 10 are shown. For each dataset, the best regressor
is indicated in brackets, giving rise to the performance measure collected in the table.
Notice these tables show the score of the metrics and the corresponding performance
measure. Therefore, the best metric may not correspond to the best performance measure.

The results are presented below regarding each dataset in each subsection. First, the
Mindboggle dataset is presented, followed by fastMRI, which is divided into two datasets:
fastMRI-1.5 and fastMRI-3. Finally, a summary of the Section 4 is presented.
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Table 3. Goodness-of-fit of noise level regression in the Mindboggle dataset. The metrics are globally
ranked by the MSE value. For the sake of readability, MSE is scaled up by a factor of 104 in this table.
Best-performing regressors are in brackets.

Metrics Score HLN MMRR NKI-RS NKI-TRT OASIS-TRT

M1 + M3 473 3.04 (KR) 2.51 (SVR) 11.36 (PR) 37.16 (PR) 7.18 (RF)
M3 + M13 468 3.04 (KR) 2.50 (SVR) 11.35 (PR) 37.17 (PR) 7.28 (RF)
M1 + M15 468 3.04 (KR) 2.50 (SVR) 11.36 (PR) 37.17 (PR) 7.23 (RF)
M13 + M15 462 3.04 (KR) 2.51 (SVR) 11.35 (PR) 37.17 (PR) 7.23 (RF)
M3 + M4 456 3.21 (KR) 2.55 (SVR) 11.25 (PR) 37.21 (PR) 7.21 (KR)
M4 + M15 453 3.23 (KR) 2.54 (SVR) 11.13 (PR) 37.21 (PR) 7.22 (RF)
M2 + M4 445 3.25 (KR) 2.56 (SVR) 11.33 (PR) 37.58 (PR) 6.79 (KR)
M4 + M14 444 3.26 (KR) 2.55 (SVR) 11.34 (PR) 37.58 (PR) 6.84 (KR)
M1 + M2 433 3.02 (KR) 2.49 (SVR) 11.46 (PR) 37.53 (PR) 7.69 (SVR)
M13 + M14 432 3.02 (KR) 2.49 (SVR) 11.45 (PR) 37.54 (PR) 7.67 (SVR)

Table 4. Goodness-of-fit of noise level regression in the Mindboggle dataset. The metrics are globally
ranked by the MAE value, scaled up by a factor of 103 in this table.

Metrics Score HLN MMRR NKI-RS NKI-TRT OASIS-TRT

M12 + M13 499 12.57 (PR) 10.95 (SVR) 26.36 (RF) 36.77 (SVR) 19.50 (KR)
M1 + M12 496 12.58 (PR) 10.92 (SVR) 26.39 (RF) 36.78 (SVR) 19.51 (KR)
M3 + M4 492 12.93 (SVR) 11.06 (SVR) 26.23 (RF) 36.82 (SVR) 18.97 (KR)
M4 + M15 488 12.92 (SVR) 11.04 (SVR) 26.33 (RF) 36.89 (SVR) 19.03 (KR)
M1 +M11 480 12.57 (PR) 10.97 (SVR) 26.71 (RF) 37.35 (SVR) 18.81 (KR)
M11 + M13 474 12.58 (PR) 10.99 (SVR) 26.75 (RF) 37.34 (SVR) 18.81 (KR)
M1 + M3 473 13.27 (SVR) 10.96 (SVR) 26.32 (RF) 36.68 (SVR) 19.80 (RF)
M3 + M13 470 13.21 (SVR) 10.95 (SVR) 26.19 (RF) 36.71 (SVR) 19.88 (RF)
M6 + M13 469 13.15 (KR) 11.05 (SVR) 26.50 (RF) 36.60 (SVR) 19.50 (KR)
M1 + M15 468 13.21 (KR) 10.95 (SVR) 26.34 (RF) 36.68 (SVR) 19.85 (RF)

Table 5. R2 of the regression models on the Mindboggle dataset.

Metrics Score HLN MMRR NKI-RS NKI-TRT OASIS-TRT

M1 + M3 477 0.9785 (KR) 0.9821 (SVR) 0.9125 (PR) 0.6952 (PR) 0.9444 (RF)
M1 + M15 472 0.9785 (KR) 0.9822 (SVR) 0.9125 (PR) 0.6952 (PR) 0.9441 (RF)
M3 + M13 469 0.9785 (KR) 0.9822 (SVR) 0.9125 (PR) 0.6951 (PR) 0.9437 (RF)
M13 + M15 462 0.9785 (KR) 0.9821 (SVR) 0.9125 (PR) 0.6951 (PR) 0.9440 (RF)
M4 + M15 458 0.9774 (SVR) 0.9819 (SVR) 0.9133 (PR) 0.6944 (PR) 0.9443 (RF)
M3 + M4 456 0.9775 (KR) 0.9818 (SVR) 0.9133 (PR) 0.6944 (PR) 0.9443 (RF)
M4 + M14 442 0.9772 (KR) 0.9818 (SVR) 0.9127 (PR) 0.6914 (PR) 0.9463 (KR)
M2 + M4 442 0.9772 (KR) 0.9817 (SVR) 0.9127 (PR) 0.6914 (PR) 0.9466 (KR)
M1 + M11 436 0.9803 (PR) 0.9821 (SVR) 0.9085 (RF) 0.6880 (PR) 0.9462 (KR)
M11 + M13 436 0.9803 (PR) 0.9821 (SVR) 0.9084 (RF) 0.6880 (PR) 0.9462 (KR)

Table 6. Goodness-of-fit of noise level regression in the fastMRI dataset with 1.5 Tesla acquisition.
The metrics are globally ranked by the MSE value, scaled up by a factor of 104 in this table.

Metrics Score T1_AXIAL_POST_GAD Axial_T1_SE T1_AXIAL AX_T1_POST_15 AX_T1_15

M5 + M10 530 7.83 (KR) 20.71 (SVR) 9.56 (SVR) 17.92 (SVR) 35.95 (KR)
M2 + M10 527 8.06 (KR) 20.94 (SVR) 9.54 (SVR) 17.92 (SVR) 35.88 (KR)
M10 + M14 525 8.05 (KR) 20.96 (SVR) 9.53 (SVR) 17.92 (SVR) 35.89 (KR)
M1 + M5 518 8.21 (SVR) 21.57 (SVR) 9.45 (KR) 17.91 (SVR) 36.33 (RF)
M5 + M13 511 8.20 (SVR) 21.53 (SVR) 9.46 (KR) 17.92 (SVR) 36.36 (RF)
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Table 6. Cont.

Metrics Score T1_AXIAL_POST_GAD Axial_T1_SE T1_AXIAL AX_T1_POST_15 AX_T1_15

M1 + M6 488 7.86 (SVR) 23.10 (SVR) 9.13 (KR) 18.46 (SVR) 35.76 (RF)
M4 + M5 486 8.43 (SVR) 21.99 (SVR) 9.63 (SVR) 17.90 (SVR) 36.57 (RF)
M2 + M13 484 8.51 (SVR) 23.04 (SVR) 9.59 (SVR) 17.93 (SVR) 36.22 (RF)
M13 + M14 479 8.53 (SVR) 22.90 (SVR) 9.64 (SVR) 17.93 (SVR) 36.15 (RF)
M6 + M13 478 7.88 (SVR) 23.14 (SVR) 9.14 (KR) 18.45 (SVR) 35.90 (RF)

Table 7. Goodness-of-fit of noise level regression in the fastMRI dataset with 1.5 Tesla acquisition.
The metrics are globally ranked by the MAE value, scaled up by a factor of 103 in this table.

Metrics Score T1_AXIAL_POST_GAD Axial_T1_SE T1_AXIAL AX_T1_POST_15 AX_T1_15

M10 + M14 534 22.02 (KR) 35.70 (SVR) 23.15 (SVR) 28.03 (SVR) 43.37 (KR)
M5 + M10 534 21.74 (KR) 35.57 (SVR) 23.26 (SVR) 28.05 (SVR) 43.42 (KR)
M2 + M10 532 22.02 (KR) 35.72 (SVR) 23.15 (SVR) 28.03 (SVR) 43.36 (KR)
M10 + M11 512 22.51 (KR) 35.86 (SVR) 23.21 (SVR) 28.06 (SVR) 43.28 (KR)
M1 + M4 499 22.76 (SVR) 36.21 (SVR) 23.19 (SVR) 28.05 (SVR) 43.56 (SVR)
M1 + M5 491 22.10 (SVR) 35.97 (SVR) 23.39 (SVR) 28.06 (SVR) 43.63 (SVR)
M4 + M14 487 22.74 (SVR) 36.23 (SVR) 23.25 (SVR) 28.07 (SVR) 43.58 (SVR)
M4 + M5 487 22.37 (SVR) 36.21 (SVR) 23.40 (SVR) 28.05 (SVR) 43.71 (SVR)
M5 + M13 486 22.07 (SVR) 35.90 (SVR) 23.44 (SVR) 28.07 (SVR) 43.63 (SVR)
M4 + M11 481 23.05 (SVR) 36.92 (SVR) 23.29 (SVR) 28.06 (SVR) 43.56 (KR)

Table 8. R2 values of regression models on the fastMRI dataset with 1.5 Tesla acquisition.

Metrics Score T1_AXIAL_POST_GAD Axial_T1_SE T1_AXIAL AX_T1_POST_15 AX_T1_15

M2 + M10 539 0.9386 (KR) 0.8503 (SVR) 0.9327 (SVR) 0.8642 (SVR) 0.7304 (KR)
M5 + M10 537 0.9404 (KR) 0.8517 (SVR) 0.9325 (SVR) 0.8642 (SVR) 0.7298 (KR)
M10 + M14 536 0.9387 (KR) 0.8500 (SVR) 0.9328 (SVR) 0.8642 (SVR) 0.7303 (KR)
M1 + M5 508 0.9371 (SVR) 0.8466 (SVR) 0.9317 (KR) 0.8643 (SVR) 0.7271 (RF)
M5 + M13 500 0.9372 (SVR) 0.8467 (SVR) 0.9316 (KR) 0.8642 (SVR) 0.7268 (RF)
M10 + M11 489 0.9337 (KR) 0.8453 (SVR) 0.9323 (SVR) 0.8636 (SVR) 0.7317 (KR)
M4 + M5 488 0.9353 (SVR) 0.8430 (SVR) 0.9313 (SVR) 0.8644 (SVR) 0.7253 (RF)
M1 + M6 487 0.9399 (SVR) 0.8355 (SVR) 0.9341 (KR) 0.8601 (SVR) 0.7310 (RF)
M2 + M13 481 0.9346 (SVR) 0.8374 (SVR) 0.9316 (SVR) 0.8642 (SVR) 0.7279 (RF)
M2 + M4 480 0.9330 (SVR) 0.8440 (SVR) 0.9316 (SVR) 0.8642 (SVR) 0.7262 (RF)

Table 9. Goodness-of-fit of noise level regression in the fastMRI dataset with 3 Tesla acquisition.
The metrics are globally ranked by the MSE value, scaled up by a factor of 104 in this table.

Metrics Score AX_T1_FLASH_(POST) AX_T1_POST_3 AX_T1_3

M11 + M13 348 7.41 (KR) 22.30 (RF) 25.62 (KR)
M5 + M10 344 7.60 (KR) 19.46 (KR) 26.06 (KR)
M10 + M11 342 7.42 (KR) 22.29 (RF) 26.08 (KR)
M1 + M11 342 7.44 (KR) 22.31 (RF) 25.83 (KR)
M4 + M11 338 7.50 (KR) 22.39 (RF) 25.77 (KR)
M2 + M10 333 7.85 (KR) 19.83 (KR) 26.21 (RF)
M10 + M14 332 7.86 (KR) 19.81 (KR) 26.21 (RF)
M5 + M13 331 7.51 (SVR) 22.23(RF) 26.53 (RF)
M2 + M13 328 7.61 (SVR) 22.36 (RF) 26.13 (RF)
M13 + M14 327 7.59 (SVR) 22.31 (RF) 26.36 (RF)
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Table 10. Goodness-of-fit of noise level regression in the fastMRI dataset with 3 Tesla acquisition.
The metrics are globally ranked by the MAE value, scaled up by a factor of 103 in this table.

Metrics Score AX_T1_FLASH_(POST) AX_T1_POST_3 AX_T1_3

M2 + M10 345 19.10 (KR) 31.59 (KR) 39.33 (RF)
M10 + M14 343 19.11 (KR) 31.59 (KR) 39.34 (RF)
M5 + M10 340 19.10 (KR) 31.43 (KR) 39.56 (KR)
M2 + M13 339 19.52 (SVR) 31.68 (SVR) 39.20 (RF)
M1 + M14 338 19.50 (SVR) 31.67 (SVR) 39.30 (RF)
M1 + M2 332 19.51 (SVR) 31.68 (SVR) 39.33 (RF)
M11 + M13 331 18.90 (KR) 32.22 (SVR) 39.13 (KR)
M13 + M14 327 19.52 (SVR) 31.68 (SVR) 39.37 (RF)
M5 + M13 326 19.41 (SVR) 31.61 (SVR) 39.78 (RF)
M10 + M11 325 18.96 (KR) 32.42 (RF) 39.26 (RF)

Table 11. R2 of regression models on the fastMRI dataset with 3 Tesla acquisition.

Metrics Score AX_T1_FLASH_(POST) AX_T1_POST_3 AX_T1_3

M11 + M13 348 0.9433 (KR) 0.8499 (RF) 0.8009 (KR)
M1 + M11 342 0.9448 (KR) 0.8527 (RF) 0.8020 (KR)
M10 + M11 342 0.9432 (KR) 0.8500 (RF) 0.8009 (KR)
M5 + M10 342 0.9457 (KR) 0.8316 (KR) 0.7973 (KR)
M4 + M11 338 0.9457 (KR) 0.8318 (RF) 0.7984 (KR)
M10 + M14 333 0.9464 (KR) 0.8313 (KR) 0.8018 (RF)
M2 + M10 332 0.9449 (KR) 0.8320 (KR) 0.7961 (RF)
M5 + M13 330 0.9428 (SVR) 0.8280 (KR) 0.7948 (RF)
M2 + M13 329 0.9450 (SVR) 0.8308 (KR) 0.8015 (RF)
M13 + M14 327 0.9446 (SVR) 0.8315 (KR) 0.7987 (RF)

4.1. Mindboggle

Table 3 collects MSE values for the metrics, taking into account the score of the analysis
represented in Tables S1, S4, S7, S10 and S13. The best input is the combination M1 + M3
for all repositories with a score of 473. M1 + M3 yields the best results because the spread
of the input samples for the regression is smaller for that combination, which facilitates the
learning of the underlying Rician noise level function. This lower spread can be observed if
Figures 15–19 corresponding to the M1 + M3 combination are compared with, for example,
Figures 7, 8, 20 and 21, which correspond to other combinations. The latter figures exhibit
a higher spread in the values of the inputs Mi, Mj as compared with the spread of the
inputs Mi, Mj of the former. Therefore, it is easier to learn the underlying Rician noise
level function. The MMRR dataset shows better performance using the SVR regressor.
It is followed by the HLN dataset as a result of the use of KR. Next, OASIS-TRT shows
MSE results using RF, KR and SVR, depending on the metrics used as input. It is followed
by the NKI-RS dataset, and finally, the worst results are for NKI-TRT, with both of the
models using PR.

In the same way, Table 4 shows MAE values for different metrics and repositories.
This information is a summary of the information in the Tables S2, S5, S8, S11 and S14.
The best metric for all repositories is M12 + M13 with a score of 499. The combination
M1 + M3 for MSE mentioned above is in seventh place with a score of 473. The order of
results for datasets is the same as for MSE described in the above paragraph: MMRR with
SVR; HLN using PR, SVR, and KR; OASIS-TRT with KR and RF; NKI-RS with RF; and
NKI-TRT with SVM.

Finally, Table 5 abridges the information of Tables S3, S6, S9, S12 and S15. M1 + M3
is the best input with a score of 477. The results show the same order in the repositories:
MMRR with SVR; HLN using KR, SVR, and PR; OASIS-TRT with RF and KR; NKI-RS with
PR and RF, and NKI-TRT with PR.
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Figure 15. Regression of the HLN repository using SVR (best ranked model). Predictors are (M1, M3).
The opacity of each shape indicates the noise level associated.
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Figure 16. Regression of the MMRR repository using SVR (best ranked model). Predictors are
(M1, M3). The opacity of each shape indicates the noise level associated.
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Figure 17. Regression of the NKI-RS repository using SVR (best ranked model). Predictors are
(M1, M3). The opacity of each shape indicates the noise level associated.
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Figure 18. Regression of the NKI-TRT repository using SVR (best ranked model). Predictors are
(M1, M3). The opacity of each shape indicates the noise level associated.
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Figure 19. Regression of the OASIS-TRT repository using SVR (best ranked model). Predictors are
(M1, M3). The opacity of each shape indicates the noise level associated.
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Figure 20. Regression of the AX-T1-1.5 dataset using SVR (best ranked model). Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.
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Figure 21. Regression of the AX-T1-POST-1.5 dataset using SVR (best ranked model). Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.

To reach a consensus, the score of the different performance measures were added to
obtain the best input metric; see Table 12. The top-scoring metric is M1 + M3 with a score
of 1423. When analyzing this metric around all repositories, SVR works better. Therefore,
M1 + M3 as an input using SVR is our chosen model as the best performing one. The results
of using this model are shown in Figures 15–19.

Table 12. Metrics sorted by score according to the performance measures using MRIs from the
Mindboggle dataset.

Metrics Score

M1 + M3 1423
M1 + M15 1408
M3 + M13 1407
M3 + M4 1404

M4 + M15 1399
M13 + M15 1379
M12 + M13 1353
M1 + M11 1343
M1 + M12 1342

M11 + M13 1337

This model is compared with the VST model to check the precision to estimate Ri-
cian noise (see Table 13). Independent of the repository used, the proposed model improves
the results of the VST model. Using the HLN dataset, the VST model has R2 = 0.86. There-
fore, it works worse than the proposed model with R2 = 0.98. Using the OASIS-TRT dataset,
the value of R2 = 0.87 indicates that the proposed model works better with R2 = 0.94.
For the rest of the repositories, the VST model cannot predict the Rician noise, whereas
the proposed model predicts the noise for MMRR with a value of R2 = 0.98 and, when
using NKI-RS, with R2 = 0.91. NKI-TRT shows R2 = 0.68, which coincides with what
is described in the tables of the previous section. This repository does not produce good
results in the prediction. Applying the VST method also reflects this in their outcomes. It is
demonstrated that our model improves noise prediction results compared with what is
currently available in the literature.
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Table 13. Metrics sorted by score according to the performance measures, using MRIs from the
fastMRI dataset with 1.5 Tesla acquisition.

Metrics Score

M5 + M10 1601
M2 + M10 1598

M10 + M14 1595
M1 + M5 1517
M5 + M13 1497

M10 + M11 1477
M4 + M5 1461
M2 + M4 1454
M2 + M13 1446

M13 + M14 1437

The HLN repository shows KR as a better model taking into the value of R2 = 0.98
(see Table S3). It determines M4 as the best metric (see Figure 2). On the other hand, the
M1 option is positioned at the bottom of the score, indicating that the metrics used in this
analysis outperform the previous results in [30]. With good precision, R2 = 0.98 determines
SVR as the best model for the MMRR repository (see Table S6). The metrics M1 and M2 as
the input in the model are the most successful results (see Figure 3). PR is the best model
for MSE value and R2 = 0.91 for the NKI-RS repository (see Table S9). The combination of
M4 and M5 is the most successful (see Figure 4). The NKI-TRT dataset shows LR as a better
model if the check R2 = 0.71 (see Table S12). The model’s most significant achievements
are attributed to using metrics M6 and M15 as inputs (see Figure 5). According to the
OASIS repository, KR is the most significant model when considering the MSE, MAE, and
R2 = 0.95 (see Tables S13–S15). The model accomplishes its greatest success when utilizing
the metrics M5 and M8 as inputs (see Figure 6).

4.2. fastMRI-1.5

Table 6 collects MSE values for the metrics, taking into account the score of the analysis
represented in the Tables S16, S19, S22, S25 and S28. The best input is the combination
M5 + M10 for all repositories with a score of 530. The T1-AXIAL-POST-GAD dataset shows
better performance using KR and then SVR. It is followed by the T1-AXIAL dataset using
SVR and KR, which is followed by AX-T1-POST-1.5 and then the Axial-T1-SE dataset, both
of them using SVR. Finally, the AX-T1-1.5 dataset shows MSE using KR and RF.

Table 7 shows MAE values for different metrics and repositories. This information is
a summary of the information in Tables S17, S20, S23, S26 and S29. The best metric for all
repositories is M5 + M10 with a score of 534. It is the same combination that MSE showed
before. The order of results for datasets is the same as for MSE described in the above
paragraph: T1-AXIAL-POST-GAD using the KR and then SVR; T1-AXIAL, AX-T1-POST-1.5,
and Axial-T1-SE all with SVR; and AX-T1-1.5 with KR and RF.

Table 8 shows R2 values for different metrics and repositories. This information is
a summary of the information in Tables S18, S21, S24, S27 and S30. The best metric for
all repositories is M2 + M10 with a score of 539. The combination M5 + M10 for MSE
and MAE mentioned above is in second place with a score of 537. The order of results for
datasets is the same as for MSE and MAE described in the above paragraph: T1-AXIAL-
POST-GAD using the KR and then SVR; T1-AXIAL with SVR and KR; AX-T1-POST-1.5 and
Axial-T1-SE all with SVR; and AX-T1-1.5 with KR and RF.

To reach a consensus, the score of the different performance measures were added to
obtain the best input metric (see Table 14). The top-scoring metric is M5 + M10 with a score
of 1601. Analyzing this metric around all repositories, SVR performs better.
Therefore, M5 + M10 as an input using SVR is our chosen model as the best perform-
ing one. The results of using this model are shown in Figures 20–24.
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Table 14. Metrics sorted by score according to the performance measures using MRIs from the
fastMRI dataset with 3 Tesla acquisition.

Metrics Score

M11 + M13 1027
M5 + M10 1026
M2 + M10 1010

M10 + M11 1009
M1 + M11 1008

M10 + M14 1000
M4 + M11 996
M2 + M13 987
M5 + M13 984
M1 + M2 984
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Figure 22. Regression of the AX-T1-SE dataset using SVR (best ranked model). Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.
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Figure 23. Regression of the T1-AXIAL dataset using SVR (best ranked model). Predictors are
(M5, M10). The opacity of each shape indicates the noise level associated.
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Figure 24. Regression of the T1-AXIAL-POST-GAD dataset using SVR (best ranked model). Predictors
are (M5, M10). The opacity of each shape indicates the noise level associated.

This model is compared with the VST model to check the precision to estimate Rician
noise (see Table 15). It can be seen that the VST model predicts better than the model we
propose when evaluated with this 1.5 Tesla MRI dataset. Paying attention to the R2 measure
for VST, the threshold of one is reached for the three datasets of Axial-T1-SE, T1-AXIAL, and
T1-AXIAL-POST-GAD. Our model is also optimistic for the sets of T1-AXIAL-POST-GAD
and T1-AXIAL, with a score of R2 = 0.93 in both. For Axial-T1-SE, the accuracy is a little
lower, with R2 = 0.85. AX-T1-POST-1.5 demonstrates high precision with R2 = 0.99, and
our model shows R2 = 0.71. Finally, AX-T1-POST-1.5 scores R2 = 0.98, and our model
presents R2 = 0.86.

Table 15. Comparison between the VST model and the proposed model (predictors are (M1, M3),
and the regressor is SVR) based on performance measures. MSE is multiplied by 10−4. MAE is
multiplied by 10−3.

Performance Measure MSE MAE R2

Model VST Ours VST Ours VST Ours

HLN 18.58 3.31 31.82 13.21 0.86 0.98
MMRR 52.43 2.51 45.91 10.96 0.59 0.98
NKI-RS 80.88 12.17 64.50 26.59 0.38 0.91
NKI-TRT 1007.04 37.83 129.28 6.68 0.00 0.68
OASIS-TRT 17.04 8.02 27.77 20.29 0.87 0.94

The fastMRI-1.5 results are discussed below. The AX-T1-1.5 dataset shows KR as
a better model when taking into the value of R2 = 0.76 (see Table S18). It determines
M8 + M12 as the best metric (see Figure 7). The precision of R2 = 0.87 determines SVR as
the best model for the AX-T1-POST-1.5 repository (see Table S21). The metrics M5 and M9
as the input in the model are the most successful results (see Figure 8). SVR is the best
model with the combination of M5 and M10; see Figure 9 for MSE, MAE, and R2 = 0.85.
For the Axial-T1-SE dataset, see Tables S22–S24. The T1-AXIAL dataset shows KR as a better
model if the check R2 = 0.93 (see Table S27). The model’s most significant achievements
are attributed to using metrics M1 and M6 as inputs (see Figure 10). According to the
T1-AXIAL-POST-GAD repository, KR is the most significant model when considering the
MSE, MAE, and R2 = 0.94 (see Tables S28–S30). The model accomplishes its greatest success
when utilizing the metrics M6 and M10 as inputs (see Figure 11).

4.3. fastMRI-3

Table 9 collects MSE values for the metrics taking into account the score of the analysis
represented in Tables S31, S34 and S37. The best input is the combination M11 + M1 for all
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repositories with a score of 348. The AX-T1-FLASH-POST dataset shows better performance
using KR and then SVR. It is followed by the AX-T1-POST-3 dataset using RF and KR.
The last is AX-T1-3 using KR and RF.

Table 10 collects MSE values for the metrics, taking into account the score of the
analysis represented in Tables S32, S35 and S38. The best input is the combination M2 + M10
for all repositories with a score of 345. The combination M11 + M13 for MSE mentioned
above is in seventh place with a score of 431. The order of results for datasets is the same as
for MSE described in the above paragraph: AX-T1-FLASH-POST-3 with KR and then SVR;
AX-T1-POST-3 with KR and SVR; and AX-T1-3 with KR and RF.

Table 11 collects R2 values for the metrics, taking into account the score of the analysis
represented in Tables S33, S36 and S39. The best input is the combination M11 + M13 for
all repositories with a score of 348. It is the same combination that MSE showed before.
The order of results for datasets is the same as for MSE and MAE described in the above
paragraph: AX-T1-FLASH-POST-3 with KR and then SVR; AX-T1-POST-3 with KR and KR;
and AX-T1-3 with KR and RF.

To reach a consensus, the score of the different performance measures were added
to obtain the best input metric (see Table 16). The top-scoring metric is M11 + M13 with a
score of 1027. Analyzing this metric around all repositories, SVR performs better. Therefore,
M11 + M13 as the input using SVR is our chosen model as the best performing one.
The results of using this model are shown in Figures 25–27.

Table 16. Comparison between the VST model and the proposed model (predictors: (M5, M10),
regressor is SVR) based on performance measures. MSE is multiplied by 10−4. MAE is multiplied
by 10−3.

Performance Measure MSE MAE R2

Model VST Ours VST Ours VST Ours

AX-T1-1.5 1.71 37.54 4.88 43.71 0.99 0.71
AX-T1-POST-1.5 2.39 17.92 6.66 28.05 0.98 0.86
Axial-T1-SE 0.14 20.71 2.86 35.57 1.00 0.85
T1-AXIAL 0.11 9.56 2.64 23.26 1.00 0.93
T1-AXIAL-POST-GAD 0.10 8.75 2.48 22.35 1.00 0.93

This model is compared with the VST model to assess its precision in estimating
Rician noise (see Table 17). It can be seen that the VST model predicts better than the model
we propose when evaluated with these 3 Tesla fastMRI datasets. Paying attention to the R2

measure for VST, the threshold of one is reached for the AX-T1-3 and AX-T1-FLASH-POST
dataset. Our model is also optimistic for the AX-T1-FLASH-POST set with R2 = 0.94, and
it has lower precision for AX-T1-3 with R2 = 0.78. Finally, AX-T1-POST-3 scores R2 = 0.90
and our model scores R2 = 0.81.

Table 17. Comparison between the VST model and the proposed model (predictors are (M11, M13),
regressor is SVR) based on performance measures. MSE is multiplied by 10−4. MAE is multiplied
by 10−3.

Performance Measure MSE MAE R2

Model VST Ours VST Ours VST Ours

AX-T1-3 0.13 29.16 2.79 41.53 1.00 0.78
AX-T1-FLASH-POST 0.12 8.03 2.82 19.95 1.00 0.94
AX-T1-POST-3 13.68 24.45 6.72 32.22 0.90 0.81

As a discussion of the fastMRI-3 dataset, the AX-T1-3 dataset shows KR as the best
model when taking into the value of R2 = 0.80 (see Table S33). It determines M11 + M13 as
the best metric (see Figure 12). The precision of MSE, MAE, and R2 = 0.95 determines KR
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as the best model for the AX-T1-FLASH-POST repository with the metrics M11 and M13
(see Figure 8 and see Tables S34–S36). The metrics M5 and M10 as the input in the model
(see Figure 14) are the most successful results for AX-T1-POST as indicated by MSE, MAE,
and R2 = 0.85 (see Tables S22–S24).
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Figure 25. Regression of the AX-T1 dataset with 3 Tesla acquisitions using SVR (best ranked model).
Predictors are (M11, M13). The opacity of each shape indicates the noise level associated.
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Figure 26. Regression of the AX-T1-FLASH-POST dataset with 3 Tesla acquisitions using SVR
(best ranked model). Predictors are (M11, M13). The opacity of each shape indicates the noise
level associated.

4.4. Summary

In general, the score of the best performing metrics does not include the single M1 or
single M4 metrics. Therefore, we greatly outperform the prior proposal [30].

As seen in Tables 3–5, several combinations of metrics and regressors yield very good
results for all Mindboggle MRI datasets. However, there are slight differences among them
due to the variety of MRI acquisition parameters and procedures employed for each dataset.
The best combinations of metrics and regressors overall, i.e., considering all real datasets,
are reported in Table 12. According to these data, the metrics M1 + M3 yield the best results
when combined with the SVR regressor. This combination has been employed for the
comparisons reported in Table 15.
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Figure 27. Regression of the AX-T1-POST dataset with 3 Tesla acquisitions using SVR (best ranked
model). Predictors are (M11, M13). The opacity of each shape indicates the noise level associated.

On the other hand, multiple combinations of metrics and regressors produce sat-
isfactory results for all fastMRI datasets with 1.5 Tesla acquisition (see Tables 6–8) and
with 3 Tesla acquisition (see Tables 9–11). Nevertheless, subtle differences exist due to
different MRI dimensions, acquisition parameters, and procedures. The most satisfactory
combinations of metrics and regressors considering the fastMRI dataset with 1.5 Tesla and
3 Tesla acquisitions are reported in Tables 13 and 14, respectively.

Finally, when comparing the proposed model based on Benford’s law with respect to
the VST model, the results depicted in Tables 13, 15 and 17 demonstrate that our model
is suitable for use with different types of datasets as the performance is good among any
image sequence, having an average R2 value of 0.87 among all datasets. However, although
VST presents an excellent performance with fastMRI images, it lacks enough precision with
Mindboggle, achieving an average R2 value of 0.81, and sometimes with a really inexact
estimation of the noise. Therefore, our proposal seems valid regardless of the MRI analyzed.

5. Conclusions

This study unveils compelling insights into the distribution characteristics of coeffi-
cients obtained from various transforms applied to T1 MRI images. Specifically, we demon-
strate the adherence of Fourier, discrete cosine, and discrete sine transform coefficients
to Benford’s law, which manifests as a logarithmic distribution of their first digits. Fur-
thermore, this investigation highlights the influence of Rician noise on the first digit
distribution of the above coefficients, causing deviations from Benford’s ideal distribution.
Consequently, a novel methodology is proposed that leverages various metrics such as the
Bhattacharyya distance, Kullback–Leibler divergence, total variation distance, Hellinger
distance, and Jensen–Shannon divergence to assess the level of noise in T1 MRI images
based on the agreement between the first digit distribution of coefficients and Benford’s law.

In particular, this paper explored the potential of supervised learning techniques in
estimating noise levels by utilizing the aforementioned divergence metrics as regressors.
Despite variations in the quality of the datasets, the experiments involving MRI scans from
several datasets coming from a wide range of different acquisition devices of 1.5 Tesla and
3 Tesla, comprising hundreds of patients, consistently validate the adherence of noiseless
T1 MRI Fourier coefficients to Benford’s law. Moreover, the observed consistency in error
measures further supports the accurate estimation of noise levels, being competitive with
and even outperforming other well-known techniques, such as the variance stabilization
transform (VST).

Incorporating our methodology into existing MRI systems and diagnostic tools can
have an impact on the field of medical imaging. It not only enhances the quality and accu-
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racy of images but also enables the development of more robust AI-driven diagnostic tools.
Additionally, it provides a standardized and data-driven approach to noise estimation,
which is vital for the medical community. This fusion has the potential to significantly
refine the quality of MRI images, augment diagnostic capabilities, improve patient care,
and streamline the clinical workflow in the realm of medical imaging.

Integrating the approach from this paper into existing MRI systems and diagnostic
tools involves a process that harmonizes innovative methodology with established tech-
nology. It would begin with the development of software modules or plugins, designed
to seamlessly merge with current MRI systems and diagnostic software. These modules
would undertake crucial data preprocessing, extracting essential image transform coeffi-
cients such as Fourier, discrete cosine, and discrete sine transforms that are essential for
subsequent noise estimation based on Benford’s law.

The heart of this integration lies in the seamless integration of the noise estimation
algorithm into the existing framework. Using Benford’s law and the metrics proposed in
the study, such as Bhattacharyya distance and Kullback–Leibler divergence, the algorithm
would estimate the noise deviation parameter from the transformed coefficients. It is not
merely about computation but also about translating the outcomes of noise estimation
into practical usage. The integration involves aligning these outcomes with denoising
algorithms within the MRI system, effectively refining them to preserve critical diagnostic
information while enhancing overall image quality. Note that our proposal presents a
consistent performance across diverse MRI datasets and acquisition devices.

This amalgamation would not stop at technical integration; it should bring a user-
friendly interface to radiologists and clinicians, ensuring the estimated noise level and its
impact on image quality are presented clearly and comprehensibly. This would result in
highly usable systems in practical situations.

To summarize, this work provides empirical evidence supporting the hypothesis of
Benford’s law in several domains, presenting a novel application of transform coefficients
and their adherence to Benford’s law as a reliable noise estimator. The utilization of diver-
gence metrics showcases promising results and demonstrates the potential for advancing
image quality assessment.
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