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Introduction and Motivation

• Within the classical FCA framework, the knowledge extracted from a
binary table of data (formal context) is essentially represented as two
complementary entities: the concept lattice and a basis of context-valid
implications.

• The concept lattice represents an exhaustive analysis of the closed sets of
objects and attributes, establishing a hierarchical biclustering among them.

• The number of concepts can be exponential in the size of the input
context and the problem of determining this number is #P-complete.

• This is true in the binary case, and the problem in the fuzzy case is even
worse.
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a b c d e
o1 0 0 1⁄2 0 1
o2 1 1⁄2 1⁄2 0 1⁄2

o3 1⁄2 1⁄2 0 1⁄2 1⁄2

Table 1: Fuzzy formal context
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o1 1 0 0 1 0 0 1 1 1⁄2 1 0 0 1 1 1
o2 1 1 1 1 1 1⁄2 1 1 1⁄2 1 0 0 1 1 1⁄2

o3 1 1 1⁄2 1 1 1⁄2 1 0 0 1 1 1⁄2 1 1 1⁄2

Table 2: Original formal context scaled as in [Belohlavek and Konecny, 2017].

One might expect that with native fuzzy approaches the resulting algorithms
could be more efficient.

4/17



Algorithms to Compute the Concept Lattice

• Determining maximal rectangles [Norris, 1978].
• First proper approach (in FCA): NextClosure algorithm [Ganter, 1984].

• Introduces the lectic order in 2M .
• Polynomial delay O(|G||M |2) searching all the intents. (note that G is the

set of objects and M the set of attributes)
• Lindig’s NextNeighbour builds the concept lattice from top to bottom,

exploring the lower neighbours of the previously computed concepts.
• Close-by-one (CbO) [Kuznetsov, 1993]: builds a tree recursively adding

new attributes to the already computed closures (by intersecting extents).
• Krajča et al. [2010]: “the major issue of widely-used algorithms for

computing formal concepts is that some concepts are computed multiple
times which brings significant overhead”.

• Fast Close-by-One (FCbO) [Krajča et al., 2010] includes an additional
canonicity test to avoid coputing concepts multiple times.

• InClose [Andrews, 2017] uses the canonicity test of the CbO family and
incremental closure computation to reduce the number of operations.

• . . .
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The Fuzzy Setting

Let L = (L, 0, 1, ∧, ∨, ⊗, →) be a finite complete residuated lattice and
K = (G, M, I) a formal context:

• G is the set of objects,
• M the set of attributes and
• I(x, y) ∈ L is the degree to which object x possesses attribute y.

The concept-forming operators in this fuzzy case are ↑ : LG → LM ,
↓ : LM → LG, defined as:

A↑(m) :=
∧

g∈G

(A(g) → I(g, m))

B↓(g) :=
∧

m∈M

(B(m) → I(g, m))
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Extensions

Previously Known

• Adaptation of the NextClosure algorithm to the fuzzy case
• Using scaling to wrap algorithms for the crisp case.

Our Proposal
Refactoring the InClose family of algorithms for fuzzy sets.
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The InClose Algorithms

Basic InClose algorithm:
• Suppose a concept candidate (A, B) is given.
• Find its children concepts as follows: for each m ∈ M :

• Build C := A ∩ {m}↓. This is an extent of the formal context.
• If C = A, we update B := B ∪ {m} (the intent A↑ is computed

incrementally in B).
• Otherwise, the algorithms check that the extent C is canonical (i.e. it has

not appeared before in the computations). If it is canonical, then repeat
this procedure with the concept candidate (C, D) where D := B ∪ {m}.

This recursive algorithm is proven to compute all the concepts if we start with
the concept candidate (G,∅).
Several improvements are incorporated to avoid repetition of canonicity tests
(InClose2), to inherit empty intersections (InClose4) and to inherit failed
canonicity tests (InClose5).
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Adaptation to the Fuzzy Case

• Instead of an attribute {m}, we now have to study all combinations
{l1/m}, . . . , {ln/m}, {m}, where we consider L = {0 < l1 < . . . < ln < 1}.

• The fuzzy algorithm does not only need to run over all attributes, but over
all grades in L.

• To avoid repeated computations, we run over L in descending order.
• A new partial canonicity test is designed to take into account the

adaptation of the crisp canonicity test to the fuzzy situation:
• In the crisp setting, the canonicity test checks the intent up to a given

attribute j ∈ M (not including it).
• In the fuzzy setting, we must take into consideration that the intent

including j (with a given degree) can have appeared before.

9/17



Algorithm 1: InClose4b_ChildConcepts(A, B, y, P , C)
Input: A: An extent; B: The intent corresponding to A, that will be completed in this

execution; y: index of the attribute where to start the exploration of this branch; P :
record for empty intersections; C: the global variable where to accumulate the
computed concepts.

1 Q := ∅
2 for j ∈ {y + 1, . . . , |M |} do
3 for k ∈ {n, . . . , 1} do
4 g := lk

5 if B ∩ {mj} ⊊ {g/mj} and (P ∩ {mj} = ∅ or {g/mj} ⊊ P ∩ {mj}) then
6 C := A ∩ {g/mj}↓

7 if C↑ ∩ {mj} = {g/mj} then
8 if C = ∅ then
9 P := (P∖{mj}) ∪ {g/mj}

10 else
11 if C = A then
12 B := B ∪ {g/mj}
13 else
14 if B ∩ Mj = C↑j then
15 Q := Q ∪ {(C, j, k)}

16 C := C ∪ {(A, B)}
17 for (C, j, k) ∈ Q do
18 D := B ∪ {lk/mj}
19 InClose4b_ChildConcepts(C, D, j, P , C)
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Some Results

We use the same example as before:

a b c d e
o1 0 0 1⁄2 0 1
o2 1 1⁄2 1⁄2 0 1⁄2

o3 1⁄2 1⁄2 0 1⁄2 1⁄2

Table 3: Formal context
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Figure 1: Order of computations performed by the fuzzy version of InClose2.
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Figure 2: Order of computations performed by the fuzzy version of InClose4a (up)
and InClose4b (down).
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Table 4: Number of computations performed by each of the algorithms for the
dataset.

Algorithm Partial tests Full tests #Intents #Extents
FuzzyInClose2 49 29 97 50
FuzzyInClose4a 41 29 89 42
FuzzyInClose4b 33 25 74 42
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Conclusions and Future Works

• We have introduced extensions of algorithms of the InClose family to the
fuzzy framework.

• Different optimisations of the algorithm are taken into consideration.
• The adaptation to the fuzzy setting requires to include partial canonicity

tests and restructuring the construction of the computation tree.
• We provide an example that shows how the different optimisations allow to

improve the number of operations performed.
• Future work:

• To study several optimisations to the InClose4 family, taking advantage of
the structure of the degrees in L.

• To explore generalisations of other algorithms, such as the FastCbO family
or the NextNeighbour or NextPriorityConcept, for the fuzzy setting, along
with different optimisations that could alleviate the greater computational
cost when compared to the binary case.

• To adapt these algorithms to compute the canonical basis of implications in
this fuzzy setting.
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