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Introduction and Motivation
• FCA allows us (and potential end-users) to represent and manage

(semantically and syntactically) all the available knowledge in a data
table.

(Un)fortunately, real-world data tables are huge ⇒ lot of knowledge to
exploit.

• The fundamental knowledge structures within a formal context are the
concept lattice and the basis of valid attribute implications.

• The classical paradigm of absolute object-attribute relationships has been
enriched by the incorporation of fuzzy set theory (see
Burusco-Juandeaburre and Fuentes-González [1994] and Bělohlávek [2002],
among others).

• Complexity of formal contexts: number of concepts exhibiting exponential
growth relative to the context size.

Even more computationally expensive in the fuzzy setting.

• As a consequence, we need to study and develop strategies to make faster
algorithms. Or maybe. . . to make algorithms faster? 2/18



A brief reminder of L-fuzzy formal concept analysis

• Let us consider a residuated lattice L = (L, ∧, ∨, ⊗, →, 0, 1).
• A formal context is a tuple (G, M, I) where G and M are non-empty

sets of objects and attributes, respectively, and I ∈ LG×M is a fuzzy
relation, commonly called the incidence relation.

• This means that each attribute m is present at each object g to degree
I(g, m) ∈ L. I(g, m) = 0 and I(g, m) = 1 have the classical meanings.

• Let A ∈ LG and B ∈ LM ,

A↑(m) =
∧

g∈G

(A(g) → I(g, m)) and B↓(g) =
∧

m∈M

(B(m) → I(g, m)).

The pair of mappings (↑,↓ ) forms a fuzzy Galois connection (Yao and Lu
[2009]).

• A formal concept is a pair (A, B) where A ∈ LG and B ∈ LM and
A↑ = B and B↓ = A.
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Attribute ordering

• Concept lattice construction algorithms (Bělohávek et al. [2010], Krajča
et al. [2010], Andrews [2018]) inherently depend on a pre-defined attribute
order to guide the exploration.

• The order in which attributes are analysed may affect algorithms’
performance.

• This idea is not new: the utilisation of doubly-lexically ordered tables has
been investigated in the context of maintaining standardisation and
enabling recursive partitioning (Pattison and Nataraja [2023]).

• But this idea has not been empirically explored.
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Rationale

• Different strategies for different algorithms?
• NextClosure (Ganter [2010]) employs the lexicographic order to prune the

computation of intents (avoiding duplicates). In layman terms, the first
attribute to be explored corresponds to the last column in the context
table.

• The CbO family of algorithms (Kuznetsov [1993]) operates primarily on
the context’s extents. Pruning is performed also by the computation of
intents.

• Intuitive idea: if the first attributes explored by the algorithm are able to
produce larger intents, then a greater pruning will be produced in the first
steps of the algorithm, reducing its computational time.

• But. . . how do we decide/determine which attributes are going
to produce a larger intent?
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Proposed rearrangements

• We expect that columns containing higher truth values will generate larger
closed sets if explored jointly.

1. Lower Cone Priority. For each attribute m, the size of the lower cone
of each I(g, m) ∈ L is determined – let us call it lcs(g, m). Averaging over
all m ∈ M , a preference score is obtained.

What does this preference score tell us when comparing two attributes?
The Lower Cone ordering prioritises attributes based on the average
position of their values within the lattice L. A higher average lower
cone cardinality for a column indicates, on average, that its truth values
occupy higher positions within the lattice structure compared to another
column with a lower average.
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2. Non-Zero Element Count. This approach prioritises sparsity. The less
sparse columns (the ones with more non-zero entries) are given a higher
preference score.

The nnz (number of non-zero elements) ordering offers a simplified
alternative to the Lower Cone approach, particularly in crisp contexts
(where values are binary). Here, the reordering computation prioritises
columns with fewer non-zero elements. While these two orderings
often coincide in crisp contexts, they can diverge in the case of L-fuzzy
contexts.

• The attribute ordering is then established such that attributes with the
highest preference scores (type 1 or 2) are processed first by the algorithm.
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Experiments and results

• Recall that the NextClosure algorithm stands alone as the sole algorithm
with extension to the L-fuzzy setting (Bělohlávek [2002]).

• We can explore what happens in the crisp case, analyzing if nnz can help
reduce the computational cost of algorithms.

We’ll be back on fuzzy NextClosure later.

• Metrics used:
• Number of Attribute Intents Computed: This metric quantifies the number

of computations of the form X↑(m), where X ⊆ G and m ∈ M . These
computations represent one of the most time-consuming operations within
the core functionalities of the algorithms.

• Algorithm Execution Time: This metric directly measures the time required
for the algorithm to execute.
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Table 1: Results in the binary setting. Time is measured in seconds.

Original ordering
FastCbO InClose5 NextClosure

|G| |M | δ |B(K)| Intents t Intents t Intents t

125 25 0.10 200.7 19366.7 0.0007 4985 0.0003 5912 0.0123
0.25 1585 122041.7 0.0049 51208.7 0.0022 35461 0.0244

50 0.10 604 184816.7 0.0039 37594 0.0011 35102 0.0281
0.25 9899 2310250 0.0598 744429.3 0.0197 440208 0.1580

75 0.10 1135.3 698650 0.0120 114623 0.0027 100650 0.0573
0.25 26855 11914900 0.2607 3317822.7 0.0715 1769732 0.6522

nnz ordering
FastCbO InClose5 NextClosure

|G| |M | δ |B(K)| Intents t Intents t Intents t

125 25 0.10 200.7 21241.7 0.0007 4619.7 0.0003 4948 0.0145
0.25 1585 132533.3 0.0051 48963 0.0023 31529 0.0235

50 0.10 604 201266.7 0.0042 32806.7 0.0011 28839 0.0245
0.25 9899 2550183.3 0.0637 683976.7 0.0208 347074 0.1287

75 0.10 1135.3 753425 0.0135 97556 0.0028 76753 0.0460
0.25 26855 13266100 0.2792 3001031.3 0.0723 1405992 0.5278 9/18



Highlights:
• On NextClosure, the nnz rearrangement is able to reduce the number of

computations and the execution time.
• On InClose5, the number of computations with nnz is reduced but the

execution time remains the same.
• On FastCbO, the execution time is not affected, but the number of

computations is increased!!
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• Back to the primary objective: to analyse the influence of the two ordering
approaches, namely Lower Cone and nnz, on the efficiency of NextClosure
in the context of enumerating formal concepts.

• Same metrics as above.
• We incorporate the lower cone strategy.
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Table 2: Results in the fuzzy setting for NextClosure. Time is measured in seconds.

Original Lower Cone nnz
|G| |M | L δ |B(K)| Intents t Intents t Intents t

125 25 L2 0.10 452 34340 0.0194 28870.7 0.0183 28684 0.0184
0.25 5928.7 331506.7 0.0806 283726.7 0.0716 279589.3 0.0734

L4 0.10 773.7 173152 0.0341 142184 0.0302 140128 0.0323
0.25 15234 2500338 0.3264 2115076 0.2852 2023846 0.2811

L8 0.10 1049.3 766460 0.0666 622630 0.0563 593683.3 0.0543
0.25 25782.3 14170673.3 1.0362 11834833.3 0.8700 11043656.7 0.8108

50 L2 0.10 1512.3 223874.7 0.0642 173634.7 0.0532 168849.3 0.0519
0.25 40886 4404921.3 0.9925 3622664 0.8110 3555716 0.7872

L4 0.10 2584.7 1160386 0.1824 902794 0.1490 859176 0.1373
0.25 101480.3 33736054 4.7487 25262250 3.5343 24844340 3.4286

L8 0.10 3821 5543853.3 0.4761 4233523.3 0.3622 3971513.3 0.3327
0.25 174914.7 187260976.7 15.3390 147066386.7 11.9332 140793376.7 11.1887

75 L2 0.10 3123.7 693174.7 0.1973 519308 0.1519 505765.3 0.1458
0.25 117370 20047082.7 4.9866 15224972 3.7696 14757693.3 3.5845

L4 0.10 5544.3 3540956 0.6140 2662388 0.4540 2578906 0.4394
0.25 317589 153110538 24.3419 116877862 18.3480 112582956 17.8424

L8 0.10 7877.7 17343346.7 1.7396 12234906.7 1.2016 11507746.7 1.1215
0.25 561812 877110786.7 81.9409 669309533.3 61.3007 632467553.3 57.4833
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Figure 1: Execution time as a function of the number of computed concepts.
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Conclusions

• We have started the exploration of formal context rearrangement in order
to reduce the computational cost of constructing the concept lattice.

• Two strategies for the fuzzy setting have been defined.
• In the simplest case, for crisp contexts, the computations made by

NextClosure and InClose are reduced wrt a random initial arrangement of
the context columns.

• FastCbO does not follow this pattern, what reinforces the idea that
different algorithms need different rearrangement strategies.

• In the fuzzy setting, both the lower cone and the nnz approaches seem to
reduce the computational cost of NextClosure.

Note that the rearrangement of a formal context by means of any of
these strategies is direct and requires much fewer calculations than the
computation of the concept lattice. Thus, the implementation of these
strategies as a pre-processing step may be of great practical help.
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Future works

• Extension of FastCbO and InClose to fuzzy setting: analysis of the effect
of rearranging a fuzzy formal context using the previous strategies. Will
they follow the same pattern as in the crisp case?

• If so, are there other possible strategies for the rearrangement of a L-fuzzy
formal context that could ensure a reduction of the computational effort of
these algorithms?

• Explore the double-lexicographic ordering of formal contexts and exploit
the obtained inherent structure to make algorithms faster.

• Explore the cost/benefit of computing (absolute and relatively) necessary
attributes.

• Investigate how these strategies adapt to different data distributions. Is
there a “best” rearrangement for a given data distribution?

• Extend this analysis to real-world problems (WIP).
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