Image Compression by Vector Quantization with Recurrent Discrete Networks
Abstract
In this work we propose a recurrent multivalued network, generalizing Hopfield’s model, which can be interpreted as a vector quantifier. We explain the model and establish a relation between vector quantization and sum-of-squares clustering. To test the efficiency of this model as vector quantifier, we apply this new technique to image compression. Two well-known images are used as benchmark, allowing us to compare our model to standard competitive learning. In our simulations, our new technique clearly outperforms the classical algorithm for vector quantization, achieving not only a better distortion rate, but even reducing drastically the computational time. © Springer-Verlag Berlin Heidelberg 2006.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Citation
Please, cite this work as:
[Lóp+06] D. López-Rodríguez, E. M. Casermeiro, J. M. Ortiz-de-Lazcano-Lobato, et al. “Image Compression by Vector Quantization with Recurrent Discrete Networks”. In: Artificial Neural Networks - ICANN 2006, 16th International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part II. Ed. by S. D. Kollias, A. Stafylopatis, W. Duch and E. Oja. Vol. 4132. Lecture Notes in Computer Science. cited By 6; Conference of 16th International Conference on Artificial Neural Networks, ICANN 2006 ; Conference Date: 10 September 2006 Through 14 September 2006; Conference Code:68317. Athens: Springer, 2006, pp. 595-605. DOI: 10.1007/11840930_62. URL: https://doi.org/10.1007/11840930_62.